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Prelude: What is black hole?

Black hole is a globally defined object, interpolating between a regular horizon and infinity
Standard assumption about infinity is asymptotic flatness (AF) implying spherical topology
Adding cosmologiсal constant gives rise to ADS black holes with spherical, flat or
hyperbolic topology
Less known are are black holes with asymptotic of linear dilaton (ALD), which exist in
theories with vector field(s) and dilaton (supergravities)
Their existence is related to existence of exact supersymmetric backgrounds in string
theory with linearly growing (in certain coordinates) dilaton field
They give rise to new holographic models
Can they have any astrophysical significance?
What is generic classical ALD black hole? (this talk)
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History
In S.B. Giddings and A.Strominger, “Dynamics of extremal black holes,” Phys.
Rev. D 46, 627-637 (1992) [arXiv:hep-th/9202004 [hep-th]] it was noticed that the
near horizon region of an extremal AF dilaton black holes can be considered as a
background of some two-dimensional quantum theory
In 2002 it was realised that this limit gives rise to an exact solution of
Einstein-Maxwell-dilaton-axion (EMDA) theory which can be interpreted as
non-asymptotically flat non-ADS black hole: [0] G.Clement, D.Gal’tsov and
C.Leygnac, “Linear dilaton black holes,” Phys. Rev. D 67, 024012 (2003)
[arXiv:hep-th/0208225 [hep-th]].
Rotating version of ALD black hole also was constructed there using Sp(4,R) sigma-model
previously developed for EMDA gravity in D.V. Galtsov and O.V. Kechkin,
“Ehlers-Harrison type transformations in dilaton - axion gravity,” Phys. Rev. D 50,
7394-7399 (1994) [arXiv:hep-th/9407155 [hep-th]]
It was demonstrated that Brown-York mass and angular momentum (Hamiltonian
formalism in spacetimes with boundaries) confirm the First law of blak hole
thermodynamics
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EMDA equations

Einstein-Maxwell-dilaton-axion theory is a consistent truncation of N = 4 supergravity
with one vector field

S =
1

16π

∫ (
− R + 2∂µϕ∂

µϕ+
1

2
e4ϕ∂µκ∂

µκ− e−2ϕFµνF
µν − κFµν F̃

µν

)√
−gd4x ,

where R is a scalar curvature, ϕ and κ are the scalar dilaton and axion fields, and Fµν is
the Maxwell tensor.
Einstein equations, following from this action are given by

Rµν = 2ϕµϕν +
1

2
e4ϕκµκν + e−2ϕT em

µ
ν ,

where
T em

µ
ν = 2FµλF

λν +
1

2
δνµFαβF

αβ

is the standard Maxwell energy-momentum tensor.
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Linear dilaton background

Static spherically symmetric spacetime

ds2LD = fdt2 − f −1dr2 − r0r(dθ
2 + sin2 θdφ2)

supported by the following dilaton and Maxwell fields,

f = e2ϕ =
r

r0
, F =

1√
2r0

dr ∧ dt,

is an exact solution of the EMDA equations [0].
Its existence is related to an exact supersymmetric solution of the string theory
In these coordinates the dilaton exponential is linearly growing as r → ∞ as well radius of
two-spheres r = const at infinity
Parameter r0 defines the electric field strength
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Asymptotically LD black hole [0]
Replacing the function

f → r − 2m

r0

in the metric, but not in the dilaton exponential, e2ϕ = r
r0

, we obtain again an exact
solution of EMDA theory with a regular horizon at r = 2m

It describes a regular neutral ALD black hole whose physical mass was computed using the
Brown-York procedure:

M = m/2

The Hawking temperature obtained from the absence of a conical singularity in the
Euclideanized solution is

T = 1/(4πr0),

and the entropy satisfying the first law

dM = TdS

is S = 2πr0m ( r0 is a background parameter and should not be varied )
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Rotating ALD black hole [0]

The rotating generalization was obtained using sigma-model generating technique

ds2 =
r2 − 2mr + a2

r0r
dt2 − r0r

[
dr2

r2 − 2mr + a2
+ dθ2 + sin2 θ

(
dφ− a

r0r
dt

)2
]

The vector field and axidilaton are

A =
r2 + a2 cos2 θ

r0r
dt + a sin2 θ dφ, z = κ+ ie−2iϕ =

ir0
r − ia cos θ

It has two horizons at r± = m ±
√
m2 − a2. The Brown-York mass and angular

momentum M = m/2, J = ar0/2, angular velocity of the event horizon Ω+ = a/r0r+ and
the Hawking temperature

T =
r+ −m

2πr0r+

satisfy the first law dM = TdS +Ω+dJ
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Generalized Lense-Thirring

Lack of spherical symmetry, RLDBH possesses an irreducible Killing tensor
K = ∂2

θ + ∂2
φ/ sin

2 θ, so the corresponding Hamilton-Jacoby equations are integrable. This
KT is slice-reducible both in foliations of codimension one (r = const and θ = const) (and
hence representable in Benenti-Francaviglia form) and with respect to a foliation of a
codimension-two surfaces (t = const, r = const) which is a property of generalized
Lense-Thirring metrics (Visser (2020), Kubiznak et al. (2021-2025)).
Original LT metric can be obtained linearizing Kerr as

ds2 = fdt2 − 2a sin2 θ(f − 1)dtdφ− dr2/f − r2(dθ2 + sin2 θdφ2),

with f = 1− 2m/r . This is only an approximate solution of vacuum Einstein equations,
which inherits Kerr KT also as approximate quantity. But if one performs squaring in (t, φ)
sector, ds2 = fdt2 − dr2/f − r2 sin2 θ

(
dφ− adt(f − 1)/r2

)2 − r2dθ2, the above Killing
tensor becomes exact. This metric was called generalized LT it has a sequence of
multidimensional extensions possessing not only rank two KT tensor, but a tower of higher
rank KT. Our RLDBH can be put in this form setting rr0 → r2
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Black hole bomb and scalarization

Radial potential in the Klein-Gordon equation for a massive particle in the RLDBH is

V =
µ2r∆

r0r2+
+

∆l(l + 1)

(r0r+)2
− r2

r2+

(
ω − ma

r0r

)2

,

where µ is particle mass and l ,m are usual spherical quantum numbers. On the horizon
∆ = 0 it stabilizes at V = k2 = (ω −mΩ+)

2, so modes with ω > 0, k < 0 are
superradiant.
At infinity, the potential is growing for massive modes and masseles modes satisfying
ωr0 < l + 1/2. Therefore, all superradiant modes are reflected from infinity,
This cause the effect of black hole bomb in Kerr metric with reflecting envelope (or
asymptitically AdS blak holes). This instability may be also interpreted as scalarization
(creation of scalar clouds arond black holes)
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Constrainted Benenti-Francaviglia ansatz and integrability

Our goal here is to obtain general EMDA solution with LD asymptotic using recently
proposed method [1,2] of direct integration of EMDA equations for stationary
axisymmetric Carter-Benenti-Francavigilia metrics

ds2 =
A2

Σ
(bdt − Bdφ)2 − B2

Σ
(adt − Adφ)2 − Σ

A2
dr2 − Σ

B2
dy2,

where one-variable functions A = A(r), Ai = Ai (r), B = B(y), Bi = Bi (y) are
introduced, and a, b are constants. BF metrics ensure existence of slice-reducible Killing
tensor, ensuring separability of Hamilton-Jacoby equations and existence of two null
shearfree geodesics congruences while the metric is non-algebraically special one.
In addition, the following constraint is imposed Σ =

√
−g = A− aB , which guarantees

the separation of the variables in the Klein-Gordon equation for the scalar field.
Under such conditions, the EMDA equations can be directly integrated, even in presence
of the potential, depending on dilaton and axion (gauged supergravity) [2]
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S-duality

Introduce complex axidilaton by z = κ+ ie−2ϕ and rewrite the action as

S = − 1

16π

∫ (
R +

2∇z∇z̄

(z − z̄)2
− (izFµνFµν + c .c .)

)√
−gd4x ,

where the self-dual Maxwell tensor is Fµν = 1
2

(
Fµν + i F̃µν

)
. The equation of motion for

the complex axidilaton than takes the form

□z − 2∂z∂z

(z − z̄)
− (z − z̄)2

4

(
iFµνF

µν + Fµν F̃
µν
)
= 0.

It is straightforward to check that the equations of motion(but not the action) are
invariant under the S-duality transformations non-changing the metric:

z → az + b

cz + d
, Fµν → (cz̄ + d)Fµν , ad − bc = 1.
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Tetrad representation

Introduce the set of tetrad one-forms ea (a = 1, .., 4), associated with our metric
parametrisation

e1 = α(bdt − Bdφ),

e2 = β(adt − Adφ),

e3 = α−1dr ,

e4 = β−1dy ,

where
α =

√
A2/Σ, β =

√
B2/Σ

.
Than the line element will be given by

ds2 = ηabe
aeb, ηab = diag(1,−1,−1,−1).
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Einstein tetrad equation

Tetrad components of the Einstein equations can be presented using the Ricci tensor as

Rab = T sc
ab +

(z − z̄)

2i
T em
ab ,

where the reduced scalar term without trace part is equal to

T sc
ab = − 1

(z − z̄)2
(z,az̄,b + z,b z̄a),

while the “pure” Maxwell term is

T em
ab = 2

(
FacF

c
b +

ηab
4

FcdF
cd
)
,

Tetrad components of the modified Maxwell equations can be written as

F ab∂a(z − z̄) + (∇µF
µν)ebν (z − z̄) + i F̃ ab∂a(z + z̄) = 0.
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Maxwell equations

An ansatz for the vector one-form compatible with our metric was found by Carter

A[1] =
R

αΣ
e1 +

Y

βΣ
e2,

which leads to the following nonvanishing tetrad components of the Maxwell tensor
F = dA:

F13 = −F̃24 =
A′(R + aY )− ΣR ′

Σ2
, F24 = F̃13 = −B ′(R + aY ) + ΣY ′

Σ2
.

The only nonvanishing components of the modified Maxwell equations are

F13(z − z̄),r +
(z − z̄)

Σ

[
A′F13 + B ′F24 − ΣF13,r

]
+ iF24(z + z̄),r = 0,

F24(z − z̄),y −
(z − z̄)

Σ

[
a(A′F13 + B ′F24)− ΣF24,y

]
− iF13(z + z̄),y = 0,

while the Bianchi identities are satisfied by default.
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Maxwell field
From our parametrisation we obtain that the Maxwell energy-momentum tensor can be
presented as follows:

T em
11 = T em

22 = −T em
33 = T em

44 = F 2
13 + F 2

24

One can introduce the tetradic potential for non-zero part of Maxwell tensor using

F13 = − ∂

∂r

(
R + aY

Σ

)
, F24 = −1

a

∂

∂y

(
R + aY

Σ

)
.

From Maxwell equations one can derive a simple linear equation on functions R, Y :

aR ′′ − Y ′′ = 0.

It follows from here that R, Y are at most quadratic polynomials of respective variables:

R = R0 + R1r + cr2, Y = Y0 + Y1y + c(ay2),

where Ri , Yi are real constants and c is the separation constant.
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Axidilaton equations
The R34 component of the Ricci tensor is identically zero, so Einstein equations leads to
first separate equation for axidilaton

z,r z̄,y + z,y z̄,r = 0.

Also hold the following identities

R11 + R33 = α2R,

R22 − R44 = −a2β2R,

R =
1

2Σ2

[
(A′)2 + (B ′)2 − ΣA′′] ,

from which one obtains the second separate axidilaton equation:

a2z,r z̄,r − z,y z̄,y = 0.

From these two equations it follows that z is a holomorphic or antiholomorphic function of
w = r + iay , except at the poles. So we can take

z = f (w), w = r + iay .
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Axidilaton anzats

Then z,y = −iaz,r , and the Laplace equation holds

z,yy = −a2z,rr ,

so we deal with a harmonic function.
A holomorphic function is needed, one that is single-valued in the entire complex plane
and non-singular except at a simple pole. Such a function must be a fractional-linear
transformation

z =
c1(r + iay) + c2
c3(r + iay) + c4

,

where all ci are arbitrary complex constants, and the constraint c1c4 − c2c3 ̸= 0 must be
satisfied for invertibility.
As shown in [2], generic case correponds to AF or asymptotically ADS black holes
Degenerate case c1 = 0 turns out to produce ALD black holes
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Polynomial structure of BF functions

From the R12 component of the Einstein equations which has no the source term we have:

aA′′ + bB ′′ = 0.

Since the first term depends only on r , and the second only on y , it follows that the
functions A, B must be polynomials of the second degree of the corresponding variables.
Thus, the most general expression for these quantities is

A(r) = α0 + qr + gr2,

B(y) = C + ny − agy2,

where α0,C , q, n, g are arbitrary constants and where we have set b = 1 by rescaling of
the time coordinate t.
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Next the strategy consists in extracting from tetrad Einstein equations further linear
equations on BF coefficients. The first is the linear equation following from the difference
of R11 − R22 components:

A′′
2 + B ′′

2 = 0,

This is solved as

A2 = a0 − 2mr + λr2, B2 = b0 + 2b1y − λy2,

where a0,m, b0, b1, λ are real constants. By rescaling of the coordinate φ one can set
λ = 1, so for the functions A2,B2 we have

A2 = a0 − 2mr + r2, B2 = b0 + 2b1y − y2,

In order to obtain the solution with linear dilaton asymptotics for the axidilaton we take
the degenerate form of the fractional-linear function with c1 = 1, than

z =
c2

c3(r + iay) + c4
.
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We use the invariance of the metric parametrization under a constant shifts of the
coordinates r and y for the following simplifications. First we use the shift r → r + r0 to
remove the real part of the complex constant c4, and than use y → y + y0 to remove the
linear term in the function B2, and after that combine constants into one complex
constant d = c2/c3. Finally for the axidilaton we will have the following simple expression

z =
d

r + iay − ip
.

Than by no loosing generality we can choose the function B2 in the form:

B2 = 1− y2,

so the variable y can be further identified with the cosine of the azimuthal angle y = cos θ.

D.V. Gal’tsov Black holes with linear dilaton asymptotic and integrability 21 / 29



General ALD solution
Substituting all our functions into the remainig equations of motion we obtain that the
variables are separated, and than the most general solution with second rank Killing tensor and
linear dilaton asymptotics is given by the functions:

A2 = r2 − 2mr + a2 − p2 +
(mn − qp)2

n2 + q2
,

B2 = 1− y2,

A = qr + pn + aC ,

B = ny + C ,

R =
r2√
2d0

+
mp√
2d0

n

q
− aδ,

Y =
ay2√
2d0

− y√
2d0

(
p +m

n

q

)
+ δ,

z = id0
(q − in)

r + iay − ip
.
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Interpretation of parameters: conical singularity

To clarify the meaning of extra parameters, it is useful to write the metric in Kaluza-Klein form:

ds2 = F (dt − ωdφ)2 − dl23
F

,

where dl23 is the 3-metric spanned by r , θ, φ. Here we will start by providing the search of the
conical singularity in our solution. Consider the part of the spacetime metric spanned by the
coordinates r and φ:

dl2(r ,φ) =
Σ

A2

[
dr2 +

A2

Σ2

(
A2B2 − B2A2

)
dφ2

]
.

For the linear dilaton solution the coefficient Σ/A2 diverges as r → ∞, because Σ is just a
linear function of radial coordinate while A2 if quadratic. So, we will consider conformally
connected metric dl̃2 = (A2/Σ)dl

2, and if the original metric had a conical singularity than it is
also true for the conformal metric as the conformal transformation doesn’t affect the angles.
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Misner string
Than, restricting our consideration to the equatorial plane, where we’ll have B2 = 1, B = C
and than taking the limit r → ∞ one obtains

dl̃2(r ,φ) = dr2 + r2
[
1−

(
C

q

)2]
dφ2,

and we see that in general there is actually a cosmic string in the solution, which can be
removed by imposing C = 0.
Consider now the rotation function

ω = −gtφ
gtt

=
A2B − aB2A

A2 − a2B2
,

which in the limit r → ∞ is significantly simplified to

ω = B = ny + C ,

so it is actually the parameter C alone, which is responsible for changing the configuration of
the Misner strings and also for the presence of the conical singularity. In order to set the Misner
strings symmetric and also exclude the conical singularity from the solution we demand C = 0.
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S-duality scale and fluxes
One check that the parameter d0 is nothing else but the parameter of the S-duality
transformation corresponding to the rescailing of the axidilaton and the Maxwell field by

z → d0z , Fµν → 1√
d0

Fµν ,

so, without loosing the generality we can set d0 = 1.
To find the electromagnetic charges one can calculate the fluxes of electric and magnetic fields
through the sphere at infinity

Q =
1

4π

∮
Sr

E r√−gdΩ, P =
1

4π

∮
Sr

H r√−gdΩ.

Radial components of these fields read

E r = e−2ϕF rt + κF̃ rt = −A23

2Σ

(
i(z − z̄)F13 − (z + z̄)F24

)
,

H r = F̃ rt = −A23

Σ
F24.
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Fluxes at infinity
Substituting the solution and taking r → ∞ one can obtain for electric charge

Q =
1√
2q

(q2 + n2),

while the magnetic charge diverges linearly as

P = − 1√
2

n

q
r +

p(q2 + n2) +mnq√
2q2

+ O

(
1

r

)
.

So, the parameter n, which plays a role of a NUT parameter leads to the infinite flux of the
magnetic field. Than, setting this parameter to zero one is left with the following charges

Q =
q√
2
, P =

p√
2
,

so, the parameter q plays a role of the electric charge, while the parameter p should be
identified with the magnetic charge of the black hole. Note that Q is associated with the flux
supporting the LD background, and not with the black hole on it. In contrary, P must be
attributed to magnetic charge of the black hole
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Rod structure

If n ̸= 0 (non-zero NUT parameter) the solution acquires non-trivial behavior at the polar
axis, known as rod structure (Harmark, 2004). This leads to mass formulas prescriptions in
EMDA gravity in terms of individual parametrs of mass, anqualr momentum and electric
charge to each rod (see I.Bogush, G.Clément and D.Gal’tsov, “Mass formulas for
supergravity black holes with string singularities,” Eur. Phys. J. C 84, no.7, 727
(2024) [arXiv:2405.19196 [gr-qc]] and refs. therein)
Each rod is a segment of the axis at which the two-dimensional eigenvector of the Gram
matrix is constant, its components being the angular momentum and the surface gravity
of Killing horizons (spacelike on Misner strings). The sum of conserved quantities
calculated over the cylinders around the rods by Ostrogradski theorem must be equal to
the corresponding quantities calculated on the spheres at infinity
Magnetic charge does not contribute to the black hole horizon rod mass, but contributes
to asymptotic mass
For ALD black holes subtraction for mass is needed.
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Misner strings and fluxes

We use the above technique to reveal the divergent part of the flux in the case of nonvanishing
NUT. For regularization, consider cylinders around the finite segments of Misner strings:

z+ northern string r ∈ [rH , l), cos θ = 1;
zH the horizon rod r = rH , θ ∈ [0, π];
z− southern string r ∈ [rH , l), cos θ = −1;

Where l is the length of the cylinder. Calculating now the magnetic fluxes around around the
rods one obtains for the sum P = PH + P+ + P−

P = −(ql + np)[n(l2 + a2 − p2)− l(pq +mn)]√
2[(ql + np)2 − a2n2]

,

which exactly coincides with the flux through the sphere of some fixed radius r as long as r = l .
Thus, the growing flux of the magnetic field at spatial infinity is caused by the Misner strings.
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Conclusions

ALD solutions and their role in supergravity seems underexplored. They create a number
of new features such as scalarization, new holography, new photon structure and so on
General solution of EMDA theory describing ALD black holes and its nutty generalizations
is shown to correspond to degenerate axidilaton structure within the recently constructed
integrable EMDA model
General solution obtained contains several new parameters including magnetic charge, shift
parameters for Misner and Dirac string, scale parameter and conical parameter
One novel feature with respect to AF and ADS black holes is that Misner string shift
parameter is related to conical parameter, so the solution without conical singularity extsts
only for symmetric configuration of Misner strings
An interesting interplay between magnetic fluxes at infinity and though the Misner strings
is manifest exhibiting conservation of diverging parts
More details will be given in preprint under preparation
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