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GW observations have established a new branch of astronomy

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars
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Around |00 CBC detections from the first three observing runs
Over 200 Significant Detection Candidates from the ongoing fourth observing run




Gravitational astronomy has only begun
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® [|GO, Virgo & KAGRA will continue to improve their sensitivities. LIGO-India expected to join in the
next few years. 1000s of GW detections anticipated.
® Plans & proposals to host upgraded detectors in the existing facilities (A#, Voyager, ...).

® Ongoing proposals to build the next generation (XG) detectors — will detect millions ot events.

SGWB, spinning neutron stars and galactic SNe, lensing of GWs.




Gravitational lensing




Strong gravitational lensing of GWs

Smalll fraction (~0.1-0.5%) of detectable
BBH mergers could be strongly lensed by '. |

intervening galaxies = multiple images,
separated by hours to weeks.

merger

detector / )
Typical mage separations: \\/
~arc sec < GW localization &

A lensed quasar



Strong gravitational lensing of GWs
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Wave optics effects in the lensing of GWSs

® \When the gravitational radius of the lens ~ ® merger
GW wavelength, interesting wave optics o
ohenomena happens.

e Unigue opportunity to observe this in GWs,
because of the long wavelength (~102-103 km)




Wave optics effects in the lensing of GWSs

® [ ensing-induced deformations in
the GW signal can be identified.

he(fs A ME, y) = h(f; ) F(f; M{, y)
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Searches for lensed GWSs

Geomtric optics regime Wave optics regime
Compute the likelihood ratio between the ‘lensed’ Compute the likelihood ratio between the ‘microlensed’
and ‘unlensed’ hypotheses from a pair of GW events. and ‘unlensed’ hypotheses from one GWV event
BL _ P(d17d2 | HL) B(/;L _ P(d|H,UL)

U P(dy,d, | Hy) P(d|Hu)



Searches for lensed GWs

Geomtric optics regime
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[LVK+ Ap) 970 191 (2024)]

1 O3 Events
Background

No evidence of strong lensing or microlensing in the data so far.
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VWhat can we learn fro
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Constraints on primordial BHs being dark matter
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Constraints on primordial BHs being dark matter

Expected upper bound on fpm

Geomtric optics regime
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[Barsode et al Ap) 975 48 (2024)]

Wave optics regime
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[Basak et al Ap] Lett 926, L28 (2022)]

Constraints will get significantly better in the near future (*Caveats)

103
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Next generation ground-based GW detectors
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[The Next Generation Global Gravitational Wave
(bottom)

Observatory:The Science Book arXiv:2111.06990] 1 4




Cosmology using strongly lensed GWSs

® X(G detectors are expected to detect ~107
mergers. ~104would be strongly lensed.

® Detected numr

per of lensed signals & thelr

time delay dis

ribution contain imprints of

cosmological parameters and the nature of
dark matter particle.

® Cosmography in the intermediate redshift
regime (z ~ 2 — 10) between SNe and CMB.
A new probe of particle dark matter.
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Expected number of lensed GWs
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Distribution of the time delay between lensed images

/_i = {ya 0-9 Zf? ZS}

p(Ar]Q) = fp(Az\Z,ﬁ) p(1| Q) di



Imprint of cosmological parameters

Expected number of lensed events (10 yrs)
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[Jana et al PRL 130, 261401 (2023)]

Lensing time delay distribution
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Assuming flat LCDM model
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Expected constraints on cosmological parameters

[Jana et al PRL 130, 261401 (2023)]
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® Assuming 10 yrs of observation using XG detectors and merger rate R = 5 x 10° yr™!
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GW lensing as a probe of dark matter

Warm dark matter WOU‘CI [Jana et al PRL in press, arXiv:2408.05290]
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in WDM model



GW lensing as a probe of dark matter

Warm dark matter would
affect the abundance of

low-mass halos —

imprint on the distribution
of time delays and lensing
fraction.
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[Jana et al PRL in press, arXiv:2408.05290]
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Summary

® The first observation of gravitationally lensed GWs should happen int the next few years. Most likely

lenses are galaxies and clusters.

® Next generation GW detectors wi
number and the time delay distri
sources, lenses and cosmology.

| observe tens of thousands ot strongly

oution will depend on a combination of th

ensed GWs. Their exact
e properties of the

® This will enable interesting probes of cosmology (expansion rate, nature of dark matter, etc).

® Probing the intermediate redshift regime (z ~ 2 — 10) that is not well probed by other

observations.



Challenges

® Accurate identification of strongly lensed GW events (or, modeling the
contamination accurately).

® Uncertainties in measuring the source population properties (likely to be
negligible in XG). Selection effects.

® Accurate modeling of the lens population. Need input from cosmological
simulations and EM lensing observations.

Some ongoing work [lana et al CQG 41 245010 (2024), Jana et al (In Prep), K. Maity et al (In Prep)]



