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GW observations have established a new branch of astronomy 
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Around100 CBC detections from the first three observing runs

Over 200 Significant Detection Candidates from the ongoing fourth observing run



Gravitational astronomy has only begun
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ral range, which quantifies the average distance at which
a fiducial 1.4M� + 1.4M� BNS could be detected with a
signal-to-noise ratio (SNR) of 8 [20–22]. During O3b the
median BNS inspiral range for LIGO Livingston, LIGO
Hanford and Virgo was 133 Mpc, 115 Mpc and 51 Mpc,
respectively. In Fig. 1 we show the growth in the num-
ber of candidates in the LVK catalog across observing
runs. Here, the search sensitivity is quantified by the
BNS time–volume, which should be approximately pro-
portional to the number of detections [3]. This is defined
as the observing time multiplied by the Euclidean sen-
sitive volume for the detector network [22]. For O1 and
O2, the observing time includes periods when at least
two detectors were observing, and the Euclidean sensi-
tive volume is the volume of a sphere with a radius equal
to the BNS inspiral range of the second most sensitive
detector in the network. For O3, to account for the po-
tential of single-detector triggers, the observing time also
includes periods when only one detector was observing,
and the radius of the Euclidean sensitive volume is the
greater of either (i) the BNS inspiral range of the second
most sensitive detector, or (ii) the BNS inspiral range of
the most sensitive detector divided by 1.5 (correspond-
ing to a SNR threshold of 12) [3]. As the sensitivity of
the detector network improves [23], the rate of discovery
increases.

Further searches for GW transients in O3b data have
been conducted focusing on: intermediate-mass black
hole (IMBH) binaries (with a component & 65M� and a
final BH & 100M�) [24], signals coincident with gamma-
ray bursts [25], cosmic strings [26], and both minimally
modeled short-duration (. O(1) s, such as from super-
novae explosions) [27] and long-duration (& O(1) s, such
as from deformed magnetars or from accretion-disk insta-
bilities) [28] signals. However, no high-significance can-
didates for types of signals other than the CBCs reported
here have yet been found.

We begin with an overview of the status of the Ad-
vanced LIGO and Advanced Virgo detectors during O3b
(Sec. II), and the properties and quality of the data used
in the analyses (Sec. III). We report the significance of
the candidates identified by template-based and mini-
mally modeled search analyses, and compare this set of
candidates to the low-latency public GW alerts issued
during O3b (Sec. IV). We describe the inferred astro-
physical parameters for the O3b candidates (Sec. V). Fi-
nally, we show the consistency of reconstructed wave-
forms with those expected for CBCs (Sec. VI). In the
Appendices, we review public alerts and their multimes-
senger follow-up (Appendix A); we describe commission-
ing of the observatories for O3b (Appendix B); we de-
tail data-analysis methods used to assess data quality
(Appendix C), search for signals (Appendix D) and in-
fer source properties (Appendix E), and we discuss the
di�culties in assuming a source type when performing a
minimally modeled search analyses (Appendix F). A data
release associated with this catalog is available from the
Gravitational Wave Open Science Center (GWOSC) [29];
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Figure 1. The number of CBC detection candidates with
a probability of astrophysical origin pastro > 0.5 versus the
detector network’s e↵ective surveyed time–volume for BNS
coalescences [3]. The colored bands indicate the di↵erent ob-
serving runs. The final data sets for O1, O2, O3a and O3b
consist of 49.4 days, 124.4 days, 149.8 days (177.2 days) and
125.5 days (142.0 days) with at least two detectors (one de-
tector) observing, respectively. The cumulative number of
probable candidates is indicated by the solid black line, while
the blue line, dark blue band and light blue band are the me-
dian, 50% confidence interval and 90% confidence interval for
a Poisson distribution fit to the number of candidates at the
end of O3b.

this includes calibrated strain time-series around signif-
icant candidates, detection-pipeline results, parameter-
estimation posterior samples, source localizations, and
tables of inferred source parameters.

II. INSTRUMENTS

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers [30–
32]. The advanced generation of interferometers be-
gan operations in 2015, and observing periods have
been alternated with commissioning periods [23]. After
O1 [13, 33] and O2 [14], the sensitivity of the interfer-
ometers has improved significantly [3, 34]. The main im-
provements were the adjustment of in-vacuum squeezed-
light sources, or squeezers, for the LIGO Hanford and
LIGO Livingston interferometers and the increase of the
laser power in the Virgo interferometer. The instrumen-
tal changes leading to improved sensitivities during O3b
are discussed in Appendix B.

Figure 2 shows representative sensitivities during O3b
for LIGO Hanford, LIGO Livingston and Virgo, as char-

[Living Rev. Rel. 19 (2016) 
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with achieved sensitivities in O1, O2 and
O3, and the expected sensitivities given by the data in Fig. 1 for future runs. There is significant uncertainty
in the start and end times of the planned observing runs, especially for those further in the future, and
these could move forward or backwards relative to what is shown above. Uncertainty in start or finish
dates is represented by shading. The break between O3 and O4 will last at least 18 months. O3 is expected
to finish by June 30, 2020 at the latest. The O4 run is planned to last for one calendar year. We indicate
a range of potential sensitivities for aLIGO during O4 depending on which upgrades and improvements
are made after O3. The most significant driver of the aLIGO range in O4 is from the implementation of
frequency-dependent squeezing. The observing plan is summarised in Sect. 2.5

2025+ : With the addition of an upgraded aLIGO interferometer in India we will
have a five-detector network: three aLIGO detectors with a design sensitivity of
330 Mpc, AdV at 150 – 260 Mpc and KAGRA at 130+ Mpc.

This timeline is summarized in Fig. 2.9 Detailed planning for the post-O3 period
is in progress and may result in significant changes to both target sensitivities and
uncertainty in the start and end times of the planned observing runs, especially for those
further in the future. As the network grows to include more detectors, sky localization
will improve (Klimenko et al. 2011; Veitch et al. 2012; Nissanke et al. 2013; Rodriguez
et al. 2014; Pankow et al. 2018), as will the fraction of observational time with multiple
instruments on-sky. The observational implications of these scenarios are discussed in
Section 5.

3 Searches and localization of gravitational-wave transients

Data from GW detectors are searched for many types of possible signals (Abbott
et al. 2018f). Here we focus on signals from CBCs, including BNS, NSBH and BBH
systems and generic unmodeled transient signals.

9GEO 600 will continue observing with frequent commissioning breaks during this period.

[arXiv:2111.03606 ]

• LIGO, Virgo & KAGRA will continue to improve their sensitivities. LIGO-India expected to join in the 
next few years. 1000s of  GW detections anticipated. 


• Plans & proposals to host upgraded detectors in the existing facilities (A#, Voyager, …). 

• Ongoing proposals to build the next generation (XG) detectors — will detect millions of  events. 


New phenomena  SGWB, spinning neutron stars and galactic SNe, lensing of GWs. 

Note: Timelines have slipped



Gravitational lensing  
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Strong gravitational lensing of GWs 

•Small fraction (~0.1-0.5%) of detectable 
BBH mergers could be strongly lensed by 
intervening galaxies ⟹ multiple images, 
separated by hours to weeks. 
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Time-domain IMR test

• 3G detectors (ET, CE etc) ~ 10x sensitivity to 2G 
detectors
• Lot more BBH mergers
• Much high SNRs

• Isolate ringdown: fit a QNM spectrum and estimate 
final mass and spin directly from the ringdown

• Constrain possible deviations from GR by using early 
inspiral and ringdown
• Eliminate merger phase altogether
• Put limits on the energy and angular momentum 

lost during merger.

• Statements on Hawkings area theorem, etc.
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Strong gravitational lensing of GWs 
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Wave optics effects in the lensing of GWs 

•When the gravitational radius of the lens ~ 
GW wavelength, interesting wave optics 
phenomena happens. 


• Unique opportunity to observe this in GWs, 
because of the long wavelength (~102-103 km)
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Time-domain IMR test

• 3G detectors (ET, CE etc) ~ 10x sensitivity to 2G 
detectors
• Lot more BBH mergers
• Much high SNRs

• Isolate ringdown: fit a QNM spectrum and estimate 
final mass and spin directly from the ringdown

• Constrain possible deviations from GR by using early 
inspiral and ringdown
• Eliminate merger phase altogether
• Put limits on the energy and angular momentum 

lost during merger.

• Statements on Hawkings area theorem, etc.

 19

merger

detector

7

lens



Wave optics effects in the lensing of GWs 

•Lensing-induced deformations in 
the GW signal can be identified. 

8
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Figure 1. Lensed and unlensed waveforms.

Figure 2. Lensing optical depth (solid lines) and lensing probability (dashed
lines) as a function of the source redshift for various fDM. This is computed
assuming y0 = 2.

Figure 3. Redshift distribution of mergers assumed predicted by different
models.

Figure 4. Fraction of lensed merger events as a function of fDM, for different
redshift distribution of mergers (up to zmax = 0.5, assuming y0 = 3).
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where f (y1,y2) is the joint distribution on y1 and y2. Let us
now apply the ratio distribution to compute fDM, with u ⌘
⇤`/⇤, y1 ⌘ ⇤, y2 ⌘ ⇤`, and

f (y1,y2) ⌘ p(⇤,⇤`|d) = p(⇤`|d,⇤) p(⇤|d) (10)

Note that the term "data" is used ubiquitously, though depend-
ing on the posterior in question, may represent different prop-
erties of the triggers. Thus,

p(u | d) = ⇥(umax - u)
Z 1

0

⇤ exp(-u⇤)p(⇤ | d)
1 - exp(-umax⇤)

d⇤. (11)

Figure 5 shows the posterior distributions of ⇤, ⇤` and u ob-
tained from the the first two observation runs of LIGO and
Virgo.

3. NOTES

- we are neglecting the clustering of MACHOs.
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estimation of the significance, we have taken into account the
effect of the “trials factor” due to 45 event pairs produced by
the 10 events—if p is the probability of an unlensed pair to
have a Bayes factor greater than a given threshold (that we
estimate from the simulations), the probability of at least one
among N unlensed pairs to randomly cross this threshold is

p Np1 1 N- - �( ) , assuming that each pair is independent.
The event pairs GW170104−GW170814 and GW150914−

GW170809 show the highest Bayes factors 198U
L� ~ and

29—their posteriors overlap at a reasonable confidence level to
suggest a possible explanation of them as double images of a
single source based on waveform similarity (see Figures 4 and
5 in the Appendix). However, galaxy lenses are unlikely to
produce time delays as long as 7 or 23 months between the
images(Haris et al. 2018), resulting in a small 4 10U

L 3* ~ ´ -

and 10−4 for both pairs. If galaxy clusters were a viable lensing
source, then one could expect time delays of a few months
(Smith et al. 2018a, 2018c). However, the rate of strongly
lensed binary black hole mergers by galaxy clusters at current
sensitivity is around 10−5 per year (Smith et al. 2018b),
disfavoring this scenario. On the other hand, the time delay
between GW170809 and GW170814 is consistent with galaxy
lenses ( 3.3U

L* ~ ). While the projected one-dimensional
posterior of, e.g., chirp mass overlap within 90% confidence
(Broadhurst et al. 2019), this is mainly caused by correlation
with other intrinsic parameters, e.g., effective spin. The
posteriors in higher dimensions do not show similar overlap
(see Figure 6 of the Appendix), implying that these waveforms
can be discriminated from each other with reasonable
confidence. Indeed, a full higher-dimensional consistency

check between the estimated parameters from this pair does
not significantly favor lensing ( 1.2U

L� ~ ). The joint Bayes
factors U

L
U
L� *´ for these pairs are 0.9 (GW170104−

GW170814), 4 10 3´ - (GW150914−GW170809) and 4
(GW170809−GW170814). In summary, we do not see any
strong evidence for the hypothesis that any of the pairs of
binary black hole signals are lensed images of the same merger
event. We have also repeated the same calculation employing
the waveform family SEOBNRV3(Pan et al. 2014; Taracchini
et al. 2014; Babak et al. 2017). The Bayes factors that we
obtain from this analysis are consistent with those presented in
Figure 2.
We also compute the Bayes factor of the hypothesis that

there exists at least one multiply imaged event in the entire
catalog of events observed by Advanced LIGO-Virgo in the
first and second observing run (without specifically identifying
that pair). Considering the fact that the probability for
observing more than two lensed images of a single merger is
negligible, the joint Bayes factor p pp pairs U

L
U
L� *å Î ( ) ( ) is equal

to 5.2, and is not highly significant.

4. No Evidence of Wave Optics Effects

When a gravitational wave propagates around an object of
size similar to its wavelength, interesting wave optics effects
are produced due to the superposition of several lensed
wavefronts with variable magnifications and time delays
(Ohanian 1974; Bliokh & Minakov 1975; Bontz & Haugan
1981; Thorne 1983; Deguchi & Watson 1986; Nakamura 1998;
Takahashi & Nakamura 2003; Christian et al. 2018). In such a
scenario, the observed waveform will have characteristic
beating patterns detectable in LIGO and Virgo(Cao et al.
2014; Lai et al. 2018), if the lensing object’s mass
M M10L

51 :, e.g., that of intermediate-mass black holes. Such
lensing effects could be detected if the lens lies close to a
caustic and its effective Einstein radius is expanded (see Lai
et al. 2018, for more details). We search for such lensing effects
in the LIGO-Virgo detections, assuming point-like lenses such
as those considered in Lai et al. (2018).
The effect of lensing may be solved from the Einstein field

equations, when the gravitational potential is too weak to
change the polarization of the wave (U 1� ), and when the
gravitational wave can be separated from the background
spacetime(Nakamura 1998; Takahashi & Nakamura 2003).13

Such an approximation is valid when the lensing object’s size
is comparable to, or larger than the wavelength of the
gravitational wave. The result in the point mass lens
approximation yields a frequency dependent magnification
factor F f M y; ,z

L( ) that is a function of the redshifted lens mass
ML

z and source position y D DL 0 Sh x= in the lens plane, where
DL and DS are angular diameter distances of the lens and the
gravitational wave source, respectively, η is the distance to the
source from the line of sight of the lens and 0x is the lens’
Einstein radius(Nakamura 1998; Takahashi & Nakamura
2003; Lai et al. 2018). The magnification factor transforms
an unlensed waveform h f ; l( ) to a lensed waveform
h f M y h f F f M y; , , ; ; ,z z

L L Ll l( ) ≔ ( ) ( ), where l is the set
of parameters describing the unlensed waveform, including the

Figure 2. Scatter plot of the log10 Bayes factors U
L� computed from the

consistency of posteriors of signal parameters estimated from each pair of
binary black hole events and Bayes factors U

L* computed from the time delay
between pairs of events. The significance of these Bayes factors is shown by
dashed lines (in terms of Gaussian standard deviations). This is estimated by
performing simulations of unlensed events in simulated Gaussian noise and
estimating the probability of unlensed events producing Bayes factors of this
value. In summary, we do not see any strong evidence for multiply lensed
images in LIGO-Virgo binary black hole detections. Note that, out of 45 event
pairs, only those pairs with log10 Bayes factors greater than −2 are shown in
the plot. We have taken into account the effect of the trials factor due the 45
event pairs.

13 When the wavelength of the gravitational wave is much larger than the
object’s size and the wave travels near the object, the wave may no longer be
separated from the background and wave scattering occurs (see, e.g., Takahashi
et al. 2005). We do not consider this effect.
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Searches for lensed GWs
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PO2.0: A MORE EFFICIENT METHOD FOR SEARCHING GW STRONG LENSING 3

observed, one can typically measure only the relative magni-205

fication, time delay, and phase difference. At each GW detec-206

tor, one can then write the observed polarizations h+,⇥( f ,✓)207

of the second image in terms of those of the first as208

h+,⇥
2 ( f ;✓eq,✓b2) = h+,⇥

1 ( f ;✓eq,✓b2 = ✓b1 +�✓b)

⌘µr
1/2 h+,⇥

1 ( f ;✓eq,✓b1) ei (2⇡ f�t+��) (2)

where,209

• ✓eq are the subset of ✓ that remain the same between210

strongly lensed copies (i.e., detector frame masses,211

spins, sky location, inclination, and polarization an-212

gles).213

• ✓b1 and ✓b2 are the remaining parameters in ✓ that214

change due to strong lensing and may be different be-215

tween the two images viz. luminosity distance dL, co-216

alescence phase �c, and arrival time tc. Note that these217

are different from the source’s true dL,�c and tc since218

they are biased by the magnification, Morse phase and219

time delay of each image.220

• �✓b = ✓b2 - ✓b1
2 are the biases introduced by strong221

lensing. These consist of relative magnification µr ⌘222

(dL,1/dL,2)2, Morse phase difference �� ⌘ �c,2 - �c,1223

and relative time delay �t ⌘ tc,2 - tc,1. We choose to de-224

note the first signal that arrives at the detectors as image225

1 so that �t > 0.226

Our aim is to express a detection statistic (essentially a227

function of the data) in terms of these variables and simplify228

it into a tractable formula that can be evaluated over a given229

pair of GW signals. Similar to Haris et al. (2018), we adopt230

the Bayes factor BL
U as our detection statistic, defined as the231

ratio of likelihoods of getting the observed data {d1,d2} under232

the lensed (HL) and unlensed (HU ) hypotheses3
233

BL
U =

P(d1,d2 | HL)
P(d1,d2 | HU )

. (3)

The marginal likelihoods (Bayesian evidences) of the hy-234

potheses can be obtained by marginalizing over the param-235

eters of the model. Assuming that the two signals are non-236

overlapping, and their noise realizations are uncorrelated, this237

yields238

BL
U =

1
2Y

j=1

Z
d✓ P(d j | ✓) P(✓ | HU )

Z
d✓eq d✓b1 d�✓b P(d1 | ✓eq,✓b1) P(d2 | ✓eq,✓b2 = ✓b1 +�✓b) P(✓eq,✓b1,�✓b | HL). (4)

We want to compute this Bayes factor using posteriors of the binary parameters obtained from d1 and d2 where the parameter239

estimation is performed without considering any lensing effects. The advantage is that this will allow us to bypass the need240

to evaluate the lensing likelihood P(d1,d2 | HL) from all the signal pairs using a computationally expensive joint parameter241

estimation. We show in Appendix A that BL
U can be calculated by marginalizing appropriately reweighted products of posteriors242

over the signal parameters, leading to the PO2.0 statistic243

BL
U =

1
2Y

j=1

Z
d✓

P(✓ | d j)
PPE, j(✓)

P(✓ | HU )

Z
d✓eq d✓b1 d�✓b

P(✓eq,✓b1 | d1)
PPE,1(✓eq,✓b1)

P(✓eq,✓b2 = ✓b1 +�✓b | d2)
PPE,2(✓eq,✓b2 = ✓b1 +�✓b)

P(✓eq,✓b1,�✓b | HL). (5)

Above, PPE, j(✓) denotes the prior used in the parameter esti-244

mation of individual signals while P(✓ | HU ) denotes the “ap-245

propriate” astrophysical prior under HU . Also, P(✓eq,✓b1 | d1)246

denotes the posterior on ✓eq and ✓b1 obtained from signal 1,247

while P(✓eq,✓b2 = ✓b1 +�✓b | d2) denotes the posterior on ✓eq248

and ✓b2 obtained from signal 2, evaluated at ✓b2 = ✓b1 +�✓b.249

Finally, P(✓eq,✓b1,�✓b | HL) is the astrophysical prior on the250

parameters ✓eq,✓b1,�✓b under HL.251

2.1. Comparison with other search methods252

lescence phase and Morse phase can be broken if there is significant contri-
bution from higher order modes of gravitational wave radiation (Dai et al.
2020; Vijaykumar et al. 2023; Janquart et al. 2021b), but this is usually a
weak measurement so we ignore it in this study.

2 here, to make the notation compact, we overload the symbols + and - to
also mean dL,2 = dL,1/

p
µr ⌘ dL,1 “ + ” µr and µr = (dL,1/dL,2)2

⌘ dL,2 “ -
” dL,1.

3 Throughout the paper, we use the same symbol P to denote different
probability distributions, distinguishing between them using only their argu-
ments. We often refer to only a subset of dimensions of a joint distribution,
which is to be understood as a distribution that is marginalized over the other
parameters.

The inner product presented in eq. 5 is a generalization of253

the posterior overlap statistic from Haris et al. (2018).254

Beq =
Z

d✓eq
P(✓eq | d1) P(✓eq | d2)

P(✓eq)
. (6)

This can be derived from eq. 5 by making two simplifying255

assumptions:256

1. Consider only the posteriors on ✓eq, by marginalising257

over ✓b j:258

P(✓eq | d j) =
Z

d✓b j P(✓eq,✓b j | d j). (7)

2. Assume that the astrophysical priors under HL and HU259

are identical to the PE priors:260

P(✓eq | HL) = P(✓eq | HU ) = PPE, j(✓eq). (8)

Simpler approximations to the above have been explored in261

the literature (Goyal et al. 2024), typically by keeping only a262

subset of ✓eq (such as component masses or sky localization263

parameters) in the integral, or by approximating the likelihood264

by a Gaussian distribution.265
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ABSTRACT9

A small fraction of the gravitational-wave (GW) signals from binary black holes observable by ground-based10

detectors will be strongly lensed by intervening objects such as galaxies and clusters. Strong lensing will11

produce nearly identical copies of the GW signals separated in time. These lensed signals must be identified12

against a background of accidentally similar unlensed GW events. This is usually done using fast, but ap-13

proximate methods that, for example, check for the overlap between the posterior distributions of a subset of14

binary parameters, or using slow, but accurate joint Bayesian parameter estimation. In this work, we present15

a modified version of the posterior overlap method dubbed “PO2.0" that is mathematically equivalent to joint16

parameter estimation while still remaining fast. We achieve a significant gain in efficiency by incorporating17

informative priors about the binary and lensing populations, selection effects, and all the inferred parameters of18

the binary. For binary black hole signals lensed by galaxies, our improved method can detect 65% lensed events19

at a pair-wise false alarm probability of ⇠ 2⇥ 10-6. Consequently, we have a 13% probability of detecting a20

strongly lensed event above 2.25� significance during 18 months of observation by the LIGO-Virgo detectors21

at their current sensitivity.22

Keywords: Strong lensing, gravitational waves, Bayesian model selection23

1. INTRODUCTION24

BµL
U =

P(d|HµL)
P(d|HU )

(1)

Gravitational lensing of gravitation waves (GWs) occurs25

when the gravity of a massive “lens” lying along the line of26

sight alters the path of GWs. If the gravitational size of the27

lensing object (⇠ GMlens/c2) is much larger than the wave-28

length of GWs, the phenomenon of lensing can be treated29

under the geometric optics approximation. In strong lens-30

ing, lensed GWs take multiple paths before refocusing on the31

observer, therefore appearing as multiple copies of the same32

waveform. These copies are identical to the source waveform33

except for an overall magnification, an overall phase shift of34

n⇡/2 (where the integer n is known as the Morse factor (Dai35

& Venumadhav 2017)), and an overall time delay. From the36

observer’s point of view, these appear as nearly identical sig-37

nals arriving from the same patch of sky, but having different38

apparent luminosity distances and arrival times, with their co-39

alescence phases differing by n⇡/2.40

Because the magnification, time delay, and Morse phase de-41

pend on the mass profile of the lensing object, strongly lensed42

GWs offer direct probes of collapsed structure in the universe,43

with applications ranging from measuring the velocity disper-44

sion in galaxies (Xu et al. 2022), to studying the nature of dark45

matter (Jana et al. 2024a), and even for constraining cosmo-46

logical parameters (Jana et al. 2024b). Strongly lensed images47

may also be used for localizing the source with far greater pre-48

cision than that allowed by individual detections (Hannuksela49

et al. 2020; Wempe et al. 2024). They could also be used50

to test the polarisation content of GWs more precisely since51
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additional images effectively multiply the number of detec-52

tors (Goyal et al. 2021a).53

Detection of such magnified images in the data may be used54

to search for additional, fainter images (Ng et al. 2024), or55

search for wave optics effects (Seo et al. 2022). Even the56

non-observation of strongly lensed images (Hannuksela et al.57

2019; McIsaac et al. 2020; Abbott et al. 2021, 2024; Janquart58

et al. 2023c) can constrain compact dark matter (Barsode59

et al. 2024) and binary black hole (BBH) formation channels60

(Leong et al. 2024).61

All of these applications of strong lensing of GWs are con-62

ditioned on our ability to identify such lensed pairs of signals63

in the first place, or confidently rule them out. Though lens-64

ing does not alter GW polarisations, the observed lensed GW65

signals may appear different. One reason for this is that the66

Earth rotates between the arrival of different images, caus-67

ing the antenna patterns to change, which results in those im-68

ages having different combinations of the GW polarisations69

(see, e.g., Goyal et al. (2021a)). The detector noise will also70

bias the lensed images differently. Even more serious is the71

possibility of false positives whereby two independent, un-72

lensed signals may appear consistent purely by accident. The73

problem of lensing identification then becomes a classifica-74

tion problem of distinguishing between truly lensed image75

pairs from unlensed event pairs (Haris et al. 2018), which can76

be significantly limited by false alarms (Caliskan et al. 2023).77

We expect ⇠ 0.1 - 1% of all events detectable by ground-78

based GW detectors to be strongly lensed by galaxies and79

clusters (Xu et al. 2022; Wierda et al. 2021). Since sev-80

eral hundred GW detections are expected in the next few81

years (Abbott et al. 2020), the first detection of strongly lensed82

GWs may be imminent. However, identifying a strongly83

lensed pair of signals among millions of possible pairs in a84

catalog of GW signals is challenging. Apart from the large85

computational cost, the task is made harder by the presence86

of false positives where unrelated GW signals resemble each87

Compute the likelihood ratio between the ‘lensed’ 
and ‘unlensed’ hypotheses from a pair of GW events. 

Compute the likelihood ratio between the ‘microlensed’ 
and ‘unlensed’ hypotheses from one GW event
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Figure 2. Bayes factors BL
U from hanabi for the highest-ranked multiple-image candidate pairs. As a check on the robustness of our results, we

show the Bayes factors calculated using three di↵erent merger rate density models, namely the fiducial model tracking the Madau–Dickinson
star-formation rate (Madau & Dickinson 2014), and also the Rmin(z) and Rmax(z) model introduced in Abbott et al. (2021a). The color for each
marker represents the value of ppair

astro for each pair, which is the probability that both of the signals from a pair are of astrophysical origins and not
from terrestrial sources.

Fig. 3. Since only type II images display waveform distortions,
we only compute the Bayes factors of the type-II-vs-I and the
type-II-vs-III hypotheses. As can be seen in Fig. 3, only a few
events display a preference for one image type versus the other
one. This is expected given the signal-to-noise ratio (SNR)
of these events and their power in higher multipole moments.
However, GW190412 and GW200129 065458 present higher
evidence for type II images. For GW190412 we find a log10
Bayes factor for type II vs. I of 0.60 ± 0.16 and for type II vs.
III of 0.22±0.16. For GW200129 065458 we find 0.38±0.14
and 0.24± 0.14 for type II vs. I and type II vs. III respectively.
These events have possible super-threshold counterparts but
those were discarded by the golum analysis. In addition, we
have also searched for sub-threshold triggers associated with
these events, but found none.

To assess the significance of the type II images, we follow
up on GW190412 and GW200129 065458 performing a sim-
ulation campaign of type I and type II images. GW190412
simulations show that indeed this event has enough power
in higher multipole moments to favor the type II hypothesis
so that it could meaningfully test that hypothesis and would
favor it if it were true. For GW200129 065458, however, that
is not the case. Moreover, GW200129 065458 might have a
significant glitch under subtraction (Payne et al. 2022). The
preference of GW190412 for a type II image could be just a
systematic e↵ect due to the waveform modeling, especially
since this event falls in challenging parts of the parameter
space (Abbott et al. 2020c; Colleoni et al. 2021; Hannam et al.

Figure 3. Distribution of Bayes factors comparing di↵erent image
type hypotheses for the 10 most relevant events. We compare the
probability of being type II vs. type I (blue-solid histogram) and of
being type II vs. type III (orange-dashed histogram). Only type II
images display waveform distortions and for that reason, we do not
compare type III vs. type I.

2021). For this reason, we repeat the analysis with di↵er-
ent waveform families from our fiducial IMRPhenomXPHM
model (Pratten et al. 2021). We find that the preference for
a type II image remains when using SEOBNRv4PHM (Os-
sokine et al. 2020) or IMRPhenomPv3HM (Khan et al. 2020).
The same conclusion holds when using di↵erent noise re-
alizations for the simulations. Details on these simulation
campaigns can be found in Appendix A.
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Although we find a mild preference for the type II image
hypothesis in GW190412, we find that this analysis cannot
provide conclusive evidence of strong lensing. However, our
techniques and pipeline will be relevant for future observ-
ing runs when high-SNR events display stronger evidence of
higher-order modes.

4. MICROLENSING EFFECTS

When the characteristic wavelengths of GWs are compa-
rable to the Schwarzschild radius of a lens (�GW ⇠ Rlens

Sch ),
we may observe frequency-dependent magnification of the
waveform that can inform us about the lens model (Taka-
hashi & Nakamura 2003; Cao et al. 2014; Jung & Shin 2019;
Lai et al. 2018; Christian et al. 2018; Dai et al. 2018; Diego
et al. 2019; Diego 2020; Pagano et al. 2020; Cheung et al.
2021; Cremonese et al. 2021; Çalışkan et al. 2022b). Since
the GWs of sources such as BBHs sweeps through a wide
range of frequencies, these beating patterns can reveal the
presence of intervening microlenses. In the sensitive range
of ground-based detectors, these e↵ects are expected for ob-
jects up to ⇠ 105M�, which includes stellar-mass objects and
intermediate-mass BHs.

Objects that can cause these microlensing e↵ects are pre-
dominantly found in larger structures. Therefore we expect
that realistic microlensing due to a field of microlenses em-
bedded in an external macromodel potential such as galaxies
and galaxy clusters causes complex e↵ects on the unlensed
waveforms (Diego et al. 2019). While the e↵ects of these
systems on GW signals have been studied (Diego 2020; Che-
ung et al. 2021; Mishra et al. 2021; Yeung et al. 2021), the
resulting waveforms are computationally costly to evaluate.
Nevertheless, in the absence of specific knowledge of the mat-
ter distribution along the travel path and to keep the problem
computationally tractable, we assume that the beating patterns
are caused by isolated point masses as a first approximation.
In this case, the microlensed waveform hMicro can be related
to the unlensed waveform hU according to

hMicro( f ; ✓,Mz
L, y) = hU( f ; ✓) F( f ; Mz

L, y) , (2)

where ✓ represents the set of parameters defining an unlensed
GW signal, Mz

L = ML(1 + zl) is the redshifted lens mass, y
is the dimensionless impact parameter, and F( f ; Mz

L, y) is
the frequency-dependent lensing magnification factor (e.g.,
Takahashi & Nakamura 2003).

Similar to Abbott et al. (2021a), we perform Bayesian infer-
ence on all events from O3b using the unlensed signal model
hU and the microlensing signal model hMicro. In particular,
we use bilby (Ashton et al. 2019; Romero-Shaw et al. 2020)
and the nested sampling algorithm dynesty (Speagle 2020).
Data products such as strain data and PSDs are the same as
for GWTC-3 and between the two signal models (Abbott et al.
2021b) For the GW parameters, we use the same priors as

GWTC-3, while the prior on the lens mass Mz
L is log uniform

in the range [1–105 M�] and the prior on the impact parameter
is p(y) / y between [0.1, 3]. All events were analyzed using
IMRPhenomXPHM (Pratten et al. 2021).

The process yields posterior probability distributions of
✓ or

n
✓,Mz

L, y
o

for the unlensed and lensed signal models,
respectively. Moreover, we compute the evidence ratio be-
tween the microlensed and unlensed signal models, better
known as the Bayes factor BMicro

U . Fig. 4 shows the distri-
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U
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Figure 4. Distribution of microlensing log10 Bayes factors BMicro
U

for all events in O3 (blue, solid line) and simulated unlensed signals
(orange, dashed line) from Abbott et al. (2021a).

bution of log10 B
Micro
U for all the events in O3 and simulated

unlensed signals from Abbott et al. (2021a). The distribu-
tion of log10 B

Micro
U is primarily clustered around 0 and the

distribution for O3 events does not extend to significantly
higher values than the distribution for simulated signals. The
marginalized posteriors of the microlensing parameters are
shown in Appendix B. We conclude that there is no com-
pelling evidence for the presence of microlensing signatures.

5. IMPLICATIONS

In this section, we consider some of the implications that
derive from the search for lensing signatures. We first forecast
the number of detectable strongly lensed events based on the
latest knowledge on the merger-rate density (Sec. 5.1). Next,
we infer upper limits on the strong lensing rate using the non-
detection of resolvable strongly lensed BBH events (Sec. 5.2).
Finally, we use the non-detection of microlensing to infer the
compact dark matter fraction in the Universe (Sec. 5.3).

5.1. Strong lensing rate

We predict the rate of lensing using the standard methods
outlined in the literature (Ng et al. 2018; Li et al. 2018; Oguri
2018; Xu et al. 2021; Mukherjee et al. 2021a; Wierda et al.
2021), at galaxy and galaxy-cluster lens mass scales. To
model the lens population, we need to choose a density profile

No evidence of strong lensing or microlensing in the data so far. 

[LVK+ ApJ 970 191 (2024)]

Geomtric optics regime Wave optics regime



What can we learn from GW lensing? Compact dark matter

[R
os

hn
i S

am
ue

l /
 P.

 A
jith

 / 
IC

TS
]



Constraints on primordial BHs being dark matter

12

4 BARSODE ET AL

5 6 7 8 9
log10 M� [M�]

0.0

0.2

0.4

0.6

0.8

1.0

f D
M

MadauDickinson

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 6 7 8 9
log10 M� [M�]

0.0

0.2

0.4

0.6

0.8

1.0

Belczynski

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Le
ns

in
g

fr
ac

tio
n

u
[%

]

Figure 3. Expected fraction u of detectable strongly lensed events if a fraction fDM of dark matter is made up of COs of mass M`.
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Figure 4. Posterior distribution of the fraction of dark matter fDM in the
form of COs of mass M`. Solid (dotted) lines and filled squares (circles)
respectively show the posteriors and 90% upper bounds on fDM assuming
flat (Jeffreys) prior in Eq. (3). We have assumed that the BBH mergers have
component masses are distributed according to the “power law + peak” model
from Abbott et al. (2023c), and are distributed in redshift following Madau &
Dickinson (2014) (thick lines) or Belczynski et al. (2016) (thin lines).

time delay is directly proportional to M`, leading to a steady
growth in the number of events having time delay greater than
the signal duration. Eventually, the fraction saturates near
M` ⇠ 107 M� as all the detectable events have sufficiently
large time delays.

With the relationship between u and fDM thus known, we
take its numerical derivative to estimate the Jacobian required
to transform the posterior on u (Eq. 3) to that on fDM (Basak
et al. 2022).

P( fDM | N,N` = 0,M`) = P(u | N,N` = 0)
du ( fDM,M`)

d fDM
(4)

Figures 4 and 5, respectively, show the posteriors and 90%
upper bounds on fDM for different choices of prior and source
redshift distributions. The posteriors show higher support for
lower values of fDM and are better constrained for higher lens
masses, being most constraining for M` ⇠ 109 M�. The latter
is a direct consequence of the lensing fraction being higher
for higher M`. We can constrain fDM . 0.4 - 0.6 with current
LIGO-Virgo data. We remark that most of the uncertainty
arises due to our choice of prior, with little dependence on the
assumed redshift distribution.

If LIGO-Virgo detectors continue to detect GW signals
without detecting the presence of strong lensing, or if such
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Figure 5. 90% upper bounds on the fraction of dark matter fDM in the form
of COs of mass M`. Results are shown for two different source redshift dis-
tributions (shaded regions vs hatches) and two different priors in Eq. (3), flat
(blue shades), and Jeffreys (red shades).

detections are confidently associated with non-CO lenses, our
constraints will become much tighter. Figure 6 shows the pro-
jected 90% upper bounds on fDM for future observing runs.
After N ⇠O(1/u) GW signals have been detected, the upper
bounds rapidly drop with further detections, raising our hopes
of competing with alternative probes of compact dark matter
in the near future.

We remind the reader that these results are based on a lower
bound obtained on the lensing fraction using the strongest lens
approximation (see Appendix A) and an empty cone optical
depth (see Appendix 2.1). Consequently, the fDM constraints
are a conservative upper bound, and may, in fact, be slightly
tighter.

5. CONCLUSION

Various searches have found no evidence of strong lens-
ing in the ⇠ 90 GW events observed by LIGO and Virgo so
far. While this non-detection is curbed by uncertainties, a
powerful argument based on time delays between observed
events can be used to conclusively rule out the presence of
lensing by COs of mass 106 - 109 M�. We have used this
non-observation to constrain the fraction of dark matter in the
form of such COs.

We used a Bayesian formalism coupled with simulations
of strong lensing of GW sources in an inhomogeneous cos-
mology. If dark matter had been in the form of COs of mass
109 M�, ⇠3.5% of all detected GW events would have been
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volume. Binaries producing a network SNR of 8 or above in
the LIGO–Virgo detectors are deemed detectable. In order to
reduce the computational cost of performing the simulations,
we estimate BMicro

U using an approximation to the Bayes factor
that is expected to be accurate in the high-SNR regime (Cor-
nish et al. 2011; Vallisneri 2012). We then compute the frac-
tion of detected events that produce a BMicro

U larger than the
highest BMicro

U obtained from real LIGO–Virgo events. This
lensing fraction is computed as a function of the fDM, which
is used to compute the Jacobian du/d fDM.
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Spread in fDM using 5 redshift distributions
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Figure 6. The spread in the 90% upper limits on fDM obtained from
the O3 events using 5 di↵erent redshift distribution models for BBH
mergers: Belczynski et al. (2016),Dominik et al. (2013), Madau &
Dickinson (2014), Abbott et al. (2021j) and uniform in comoving 4-
volume, assuming a monochromatic mass spectrum for the compact
objects forming dark matter. The lens mass is shown on the horizon-
tal axis. The grey (black) shaded regions correspond to the spread in
fDM upper bounds computed assuming flat (Je↵reys) prior on ⇤ and
⇤`. The upper and lower curves bounding the spreads correspond
to the most pessimistic (weakest) and optimistic (strongest) upper
limits, as determined from the set of assumed redshift distributions,
in each mass bin.

The largest value of the microlensing likelihood ratio ob-
tained from GWTC-3 events is log10 B

Micro
U = 0.799. We

compute the fraction of simulated events with log10 B
Micro
U �

0.799, for di↵erent lens masses. This allows us to compute
the Jacobian du/d fDM and thus the posterior on fDM. The 90%
upper limits are shown as a function of the lens mass (assum-
ing a monochromatic spectrum) in Fig. 6. The bounds we
obtain are weaker than some of the existing constraints (Carr
& Kuhnel 2020; Carr et al. 2020). The GW lensing bounds
will improve significantly in the next few years as the sensitiv-
ity of GW detectors improve (Abbott et al. 2018). Assuming
⇠ 300 BBH detections in O4 and O(1000) detections in O5,

the constraints on fDM will improve to ⇠ 10�1 and ⇠ 10�2,
respectively.

6. CONCLUDING REMARKS

We have extended the search for lensing signatures to all
BBH candidates with a probability of astrophysical origin
higher than 0.5 from O3b (Abbott et al. 2021b). While we
have not observed any significant candidates for strongly
lensed events, we updated the constraints on the rate of such
events from several di↵erent analyses. First, we searched for
sub-threshold repeated signals associated with super-threshold
events using reduced template banks produced from the poste-
rior probability distributions of the super-threshold events. In-
teresting sub-threshold/super-threshold pairs and pairs formed
from two super-threshold events were further analyzed for
their probability of being from a single, strongly lensed source.
For super-threshold/super-threshold pairs, we calculated the
degree of overlap between the posteriors of the intrinsic param-
eters and sky location, which were obtained from Bayesian
inference. Moreover, we analyzed these pairs using a new
analysis based on the comparison of spectrograms through
machine learning. Finally, pairs with false-positive probability
from either analysis smaller than 10�2 were further studied
by conducting full joint Bayesian inference analyses that take
population priors and selection e↵ects into account. We found
no pairs that show significant evidence for strong lensing.

The events from O3b were also analyzed for distortions
caused by the lens on the gravitational waveform. First, we
searched for the distortions that lensing introduces on type
II signals, which are in the form of a frequency-independent
phase shift (Morse phase). The Bayes factors for all events
show no evidence for type II signal distortions. Similarly, we
searched for the frequency-dependent distortions caused by
point masses. None of the computed Bayes factors show any
significant signs of microlensing. For both analyses, some
events show interesting features in the posteriors for the Morse
phase or lens mass. However, follow-up analyses using sim-
ulated signals show no further signs of the lensing nature
of these features. Altogether, we found no significant evi-
dence for distortions of the gravitational waveforms that can
be attributed to lensing.

The lack of evidence for lensing is then used to infer prop-
erties of the lensing rates and to set constraints on the dark
matter fraction of (dark) compact objects.

Finally, we note that our conclusions are based on estimates
and assumptions that are in line with other analyses from the
LIGO–Virgo–KAGRA Collaboration (Abbott et al. 2021f,j).
It is possible to arrive at di↵erent conclusions and interpreta-
tions if assumptions are chosen di↵erently. Examples include
claims that almost all detections are strongly lensed if one
assumes that heavy BHs do not exist (Broadhurst et al. 2018,
2020a,b). Data from the upcoming observing runs are ex-

[Barsode et al ApJ 975 48 (2024)] [LVK+ ApJ 970 191 (2024)]
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After ( )N u1~ ' GW signals have been detected, the upper
bounds rapidly drop with further detections, raising our hopes
of competing with alternative probes of compact dark matter in
the near future.

We remind the reader that these results are based on a lower
bound obtained on the lensing fraction using the strongest lens
approximation (see Appendix A) and an empty-cone optical
depth (see Section 2.1). Consequently, the fDM constraints are a
conservative upper bound, and may in fact be slightly tighter.

5. Conclusion

Various searches have found no evidence of strong lensing
in the ∼90 GW events observed by LIGO and Virgo so far.
While this nondetection is curbed by uncertainties, a powerful
argument based on time delays between observed events can be
used to conclusively rule out the presence of lensing by COs of
mass 106–109Me. We have used this nonobservation to
constrain the fraction of dark matter in the form of such COs.

We used a Bayesian formalism coupled with simulations of
strong lensing of GW sources in an inhomogeneous cosmol-
ogy. If dark matter had been in the form of COs of mass
109Me, ∼3.5% of all detected GW events would have been
strongly lensed. Nonobservation of such lensed signals allows
us to rule out 40%−60% of dark matter in the form of COs of
mass 106−109Me. While these are quite modest when
compared to those in the literature (B. Carr et al. 2021), they
will only improve with the availability of more data, provided
we can conclusively rule out strong lensing from observed data.

The latter expectation may seem too optimistic; current
estimates of lensing rates (K. K. Y. Ng et al. 2018;
M. Oguri 2018) predict that detection of a strongly lensed
event is imminent in the upcoming runs of LIGO-Virgo. In case
such a detection is made, do our future predictions on fDM
constraints become void entirely? We think that there is still
hope of ruling out compact dark matter lenses in such a case,
and outline a procedure for doing so.

First, a point lens is known to produce exactly two images
separated by a Morse phase difference of exactly π/2.
Therefore, if more than two lensed counterparts of the same
event are detected, or if only two lensed images are detected
but having a Morse phase difference of 0 or π, they could not
have been lensed by a point lens. Our simulations show that

galaxy lenses have roughly equal chances of producing exactly
two or more than two images. Such “lens reconstruction”
approaches have received some recent attention (J. Janquart
et al. 2023a; M. Wright et al. 2023; E. Seo et al. 2024).
Building upon these approaches to determine our precise ability
to rule out CO lensing from multiple images produced by
galaxy/cluster lenses is something that we are now
investigating.
Our constraints on fDM are conservative, and they could be

tighter. Part of this can be attributed to the fact that we have
used an empty-cone optical depth for all fDM, even though the
optical depth may be slightly larger in partially filled cones. In
addition, our result is conservative because we have neglected
multiple lensing. However, through simulations of double
lensing across different source redshifts, we find that the error
would be smaller than 2.5%, and ignoring multiple lensing
would make our constraints only slightly weaker.
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Appendix A
Multiple Gravitational Lensing

We treat multiple lensing as a perturbative phenomenon
where the second strongest lens perturbs the solution corresp-
onding to the strongest lens, the third strongest lens perturbs the
solution corresponding to the strongest two lenses, and so on.
The formula for magnification by a point lens (e.g., M. Mene-
ghetti 2021) gives a natural criterion for deciding the lenses’
strength:

( ) ( )y
y

y y
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2

2 4
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As shown in Figure 7, μ± decrease monotonically with y.
Hence, a lens with a smaller y is relatively “stronger” than one
with a larger y.
One may interpret the optical depth τ(zs)/π as a surface

density of lenses projected onto the source plane, where
separations are measured in units of the dimensionless impact
parameter y. If lenses are uniformly distributed on the source
plane, the probability distribution of the smallest impact
parameter y1 can be derived using elementary considerations
of the Poisson distribution.
The probability P(y1)δy1 of finding the closest lens between

[y1, y1+ δy1] is given by the product of probability of finding
no lenses in a disk of radius y1, and the probability of finding
exactly one lens in an annulus of inner radius y1 and thickness
δy1. These probabilities are given by
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Figure 6. Current and expected 90% upper bounds on the fraction of dark
matter fDM in the form of COs of mass Mℓ = 107 Me, as a function of the
number of BBH observed mergers with no detected lensed events. The black
and gray lines correspond to flat and Jeffreys priors, respectively. We have used
a GW source redshift distribution from P. Madau & M. Dickinson (2014) for
this simulation.
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macrolens, which is expected to happen only for a small
fraction of MACHOs. We also neglect any additional effect of
lensing by substructures in dark matter halos (e.g., Dai et al.
2018). The clustering of MACHOs, which we neglect, is
unlikely to change our results significantly (Zackrisson &
Riehm 2007).

The bounds that we obtain are weaker than some of the
existing constraints (Carr & Kuhnel 2020; Carr et al. 2021).
However, the GW lensing bounds will get significantly better
in the next few years as the sensitivity of GW detectors
improve. The sensitivity improvement will bring about two
effects. First, the increased number of total detections will
allow us to estimate the lensing fraction u better (see, e.g.,
Figure 2). Second, the increased horizon distance of the
detectors will increase the lensing optical depth and hence the
fraction of lensed events (see, e.g., Figure 3). The expected fDM
upper limits from future detections (Abbott et al. 2018) are
shown in Figure 6 (for lens mass 103Me) as a function of the
number of detected BBH mergers, assuming that none of them
show signatures of lensing. With the upcoming third generation
of GW detectors that will detect hundreds of thousands of
binary black hole mergers every year by probing the high-
redshift universe (z; 15), the constraints will improve by
orders of magnitude. It is fair to say that microlensing of GWs
is opening a powerful probe of the nature of dark matter.
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Appendix A
Posteriors of Lensing Fraction Assuming Different Priors

Here we present the explicit expressions of the posteriors of
the lensing fraction u≡Λℓ/Λ using different priors. Here Λ and
Λℓ are the Poisson means of the number of binary black hole
detections and the lensing detections, respectively. If we
assume flat priors for Λ and Λℓ; that is,
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We use these expressions to compute the posteriors shown

in Figure 2. The normalization is fixed by
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Appendix B
Astrophysical Simulations of Lensed Mergers

Here we describe the astrophysical simulations used to
evaluate the efficiency of our Bayesian model selection method
in distinguishing lensed merger events from unlensed events,
thus estimating the Jacobian between the compact dark matter

Figure 6. Upper bounds on fDM expected from future observing runs, shown as
a function of the cumulative number of detected BBH events (for lens mass
103Me). The black (gray) curves show the bounds computed assuming flat
(Jeffreys) prior on Λ and Λℓ. The number of detected events in O2 and O3a are
shown as vertical lines. We also show the approximate number of detectable
events in the second half of the third observing run (O3b) and the fourth
observing run (O4). The expected bounds fall faster with increased sensitivity
anticipated in upcoming observing runs. We have used the redshift distribution
of binary mergers given by Belczynski et al. (2016a) to compute these expected
bounds.
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Constraints on primordial BHs being dark matter

13Constraints will get significantly better in the near future (*Caveats) 

[Barsode et al ApJ 975 48 (2024)] [Basak et al ApJ Lett 926, L28 (2022)]
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2 Chapter 1. Introduction

SENSITIVITY OF ET AND CE COMPARED TO ADVANCED LIGO & THE REACH FOR 3G OBSERVATORIES
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Figure 1.1: GW strain noise for current and future detectors (left) and astrophysical reach for equal-mass,
nonspinning binaries distributed isotropically in sky and inclination (right).

at least three sites is required to accurately localize sources in the sky and infer their distances. ET alone
could measure the wave’s polarization but cannot resolve all the parameter degeneracies to determine the sky
position even when the signals last for days.

The science potential of the 3G network is immediately apparent from the dramatic improvement in strain
sensitivity that CE and ET are able to deliver (Figure 1.1, right panel). The network makes a leap of 1–2
orders of magnitude in the redshift reach for binary coalescences compared to Advanced LIGO and Virgo.
The network will survey a large redshift range for merging binary black holes and provide a massive catalog
of detections to constrain their population and origins. The network will explore a wide parameter space of
quantum chromodynamics and study high density matter in a region complementary to heavy ion physics
experiments. The Box below summarizes the science potential of a 3G observatory, elucidated in the next
several paragraphs.

SCIENCE TARGETS FOR THE NEXT GENERATION OF GRAVITATIONAL WAVE DETECTORS

GW astronomy provides a complementary window to EM, neutrino and particle astronomy that could
reveal hitherto unseen world. A new generation of detectors will:

• determine the properties of dense matter, discover phase transitions, and the emergence of quarks
• reveal merging black holes across the cosmos and search for seeds of supermassive black holes
• investigate the particle physics of the primeval Universe and probe its dark sectors
• explore new physics in gravity and in the fundamental properties of compact objects
• understand physical processes that underlie the most powerful astrophysical phenomena

1.2 Extreme Matter, Extreme Environments.
Neutron stars are the densest objects in the cosmos and sites of stupendously strong magnetic fields, up to
billions of tesla. Six decades after their discovery, we still lack a clear understanding of the equation of state
of their deep cores and the origin of their strong magnetic fields. Neutron stars in binaries are subject to the
tidal fields of their companions although the tides raised are extremely small. The extent of tidal deformation
depends on the internal structure of neutron stars and the net effect is to accelerate the rate of inspiral allowing
to read-off their internal structure from the observed phase evolution of the signal. The merger remnant could
be a rapidly rotating, short-lived, hypermassive neutron star that eventually collapses to a black hole. GWs
from the merger will lead to tight measurements of NS radii and hence reveal the equation of state of both
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ARTISTS CONCEPTION OF EINSTEIN TELESCOPE (LEFT) AND COSMIC EXPLORER (RIGHT)

Artists conception of the Einstein Telescope (left panel) and Cosmic Explorer (right panel) observatories. ET
is conceived to be six, V-shaped, underground interferometers, formed out of 10 km sides of an equilateral
triangle, while Cosmic Explorer is conceived to be an L-shaped, overground interferometer, with 40 km arms.

seed the formation of new stars and whether starquakes cause mysterious bursts of radio emission. And as
with any completely new method of observation, there is also the possibility that next generation detectors
will reveal completely new dark phenomena, unseen with light, that we have not yet conceived of.

Today’s gravitational-wave detectors are barely sensitive enough to detect the loudest gravitational waves
in the Universe, like a simple radio able to pick up only the loudest signals. Next-generation network detector
designs leverage cutting-edge technology to surpass current ground-based detectors, making their ability to
measure passing gravitational waves more than ten times better than the current instruments.

More powerful detectors will let us listen to the gravitational-wave universe with unprecedented fidelity,
fully revealing the rich physics encoded in the waves but currently hidden by observational uncertainty.
Einstein Telescope (ET) is a European design featuring six V-shaped interferometers in a triangular topology
with 10 km interferometer arms and Cosmic Explorer (CE) is a U.S. design for one or two interferometers
with 40 km L-shaped interferometer arms. ET and CE are expected to detect hundreds of thousands of
mergers, as well as tens of thousands of multimessenger sources that would also likely emit EM radiation and
particles that telescopes and neutrino and cosmic ray detectors can observe. A network of three detectors
distributed around the globe will triangulate the gravitational wave signal’s location in the sky, critical
information that will guide telescopes on Earth and in space in searches for related EM emission.

21st century astronomy will be further revolutionized by the launch of the space-based LISA gravitational-
wave observatory, expected in 2034. LISA will sense gravitational waves emitted by more massive systems
than ground-based detectors, detecting the signature of orbiting black hole systems up to years before
ground-based detectors observe them collide. Combining space-based and ground-based observations will
allow us to catalog a much broader expanse of the extreme gravitational Universe than ever before.

Gravitational waves have already given us a first glimpse of the dark, hidden, violent Universe. A global
next-generation gravitational wave observatory will propel the field of astrophysics and all foundational
science research forward. Observing light, neutrinos and cosmic rays in concert with next-generation
gravitational wave detectors will launch enormous advances beyond the current limits of human knowledge,
from the quantum realm to the largest cosmological structures in the known Universe.
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Cosmology using strongly lensed GWs 

•XG detectors are expected to detect ~107 

mergers. ~104 would be strongly lensed. 


•Detected number of lensed signals & their 
time delay distribution contain imprints of 
cosmological parameters and the nature of 
dark matter particle. 


•Cosmography in the intermediate redshift 
regime (z ~ 2 – 10) between SNe and CMB. 
A new probe of particle dark matter. 
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FIG. 1. Left Panel: The redshift distribution of BBH mergers from [67] converted to a luminosity distance distribution, assuming standard
cosmology [43]. Middle Panel: Source redshift distributions, converted from the aforementioned luminosity distance distribution, assuming
di↵erent values of ~⌦. Right Panel: The source redshift distribution pb(zs | ~⌦) from [67], and the lensing probability P`(zs | ~⌦) assuming the
halo mass-function described in [68]. The competing e↵ects of a decreasing probability of sources and increasing probability of lensing
at high redshifts is reflected in the shifted peak of the distribution of lensed sources p(zs | ~⌦) to higher redshifts. Here ~⌦ = {H0 =
67.3 km s�1Mpc�1, ⌦m = 0.316}.

Mmax = 1015M� 4. We then define an integrated comoving
number density as nc(z`) ⌘ a3(z`)n(z`) where a is the scale
factor, and a normalized redshift-dependent number density
(or, equivalently, a mass distribution with shape-parameter z`)
as pM(M; z`) = n(z`,M)/n(z`). The di↵erential optical depth
may now be written as:

d⌧
dz`d�
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16⇡3

E(z`)
c
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✓�
c

◆4
[D�t(z`, zs)]2

 
D`s
Ds

!4

p�(�; z`)nc(z`)

(0.11)
where p�(�; z`) ⌘ pM(M; z`) dM

d� is a velocity dispersion distri-
bution at redshift z`. This di↵erential optical depth is used in
Eq.(0.5) to choose the distribution of z` and �.

The distribution of the lens velocity dispersion p�(�; z`) at
di↵erent lens redshifts are calculated assuming a halo-mass
function and cosmology ~⌦. For illustration, Fig. 2 plots
velocity-dispersion distributions for two di↵erent halo mass
function models at di↵erent redshifts. Notice the non-trivial
di↵erence between the distributions pertaining to the di↵erent
halo mass models. Such di↵erences could potentially lead to
biases in the estimation of ~⌦, if the true halo-mass model is
not known. See the next section for an illustration of such
systematic errors.

In order to evaluate the di↵erential optical depth, a mapping
between the halo mass M and the corresponding dispersion �,
must be constructed. Assuming spherically symmetric halos
with uniform density ⇢ and radius R, that have virialised, we
have:

� '

r
GM

R
, M =

4
3
⇡R3⇢, ⇢ = �m(z)⇢m(z), (0.12)

where �m is the overdensity of the halo and ⇢m is the mean
density of the universe, both �m and ⇢m depends on redshift.

4 We have chosen this mass range as most of the current halo mass function
models are valid inside this mass range. In the actual analysis, this mass
range has to be made su�ciently wide so that further extension of the mass
range will have no e↵ect on the number of lensed events and the time delay
distribution.

Eliminating R to express � in terms of M, ⇢, and di↵erentiating
with respect to M, yields dM/d� = 3M/�. We also need to
use some minimum and maximum cuto↵ for � to compute the
total optical depth defined in Eq.(0.7). The natural choices are
�min = �(Mmin) and �max = �(Mmax).

FIG. 2. The left panel shows the distribution of lens velocity disper-
sions along the line of sight evaluated at di↵erent redshifts for two
di↵erent halo mass models, “Behroozi” [68] (solid lines) and “Jenkins”
[69] (dashed lines). The right panel shows the corresponding mass
functions.

SYSTEMATIC ERRORS

Due to incorrect halo mass function models

A major source of systematic error in this method is the
model of the halo-mass-function. We therefore also study the
e↵ect of using the wrong halo-mass model to construct the
template time delay distributions. In particular, we continue
to assume the model of Behroozi [68] to be the “true” model,
but construct the templates using the model by Jenkins [69],
implemented in the hmfcalc package [70]. For R = 5⇥105 yr�1

and Tobs = 10 yrs, we find that, while the precision of the
estimates are similar to the one when the templates also used
the “true” halo mass model, the estimates of the cosmological
parameters are significantly biased, and the “true” cosmology
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governed by the cosmological parameters ~⌦. The model distribution p(�t | ~⌦,Tobs) is obtained
from the expected (intrinsic) time delay distribution p(�t | ~⌦), after applying the condition that
we can not observe the time delays which are greater than the observation time Tobs:

p
⇣
�t | ~⌦,Tobs

⌘
/ p
⇣
�t | ~⌦

⌘
(Tobs � �t)⇥(Tobs � �t), (6)

where ⇥ denotes the Heaviside step function.

2.2. Modelling the expected number of lensed events and lensing time delays

The Bayesian inference presented in section 2.1 essentially involves comparing the observed
number of lensed events N and the distribution of their time delays {�ti}Ni=1 with the
theoretical prediction of the expected number of lensed events ⇤(~⌦,Tobs) and their time
delay distribution, p(�t | ~⌦), as a function of the parameters ~⌦. Here we describe how these
quantities can be modelled using a cosmological model. We assume the flat ⇤CDM model.
However, similar calculations can be performed using more general cosmological models as
well.

2.2.1. Expected number of lensed events: To compute the expected number of lensed
binaries, we convolve the redshift distribution of merging binaries with the strong lensing
probability at that source redshift.

⇤(~⌦,Tobs) = S(Tobs) ⇥ R
Z zmax

s (~⌦)

0
pb(zs|~⌦) P`( zs|~⌦) dzs, (7)

Above, R is the BBH detection rate, pb(zs|~⌦) is the redshift distribution (probability density)
of merging binaries and P`(zs|~⌦) is the strong lensing probability for the source redshift zs.
Here we assume that the GW detectors are able to detect all the merging binaries out to zmax.
For XG detectors, this is a good assumption for the zmax values that we use ¶. S(Tobs) denotes
the selection e↵ects due to the finite observing time

S(Tobs) =
Z Tobs

�t=0
p(�t|~⌦) (Tobs � �t) d�t. (8)

This takes into account the fact that if the lensing time delay �t is comparable to the observing
time Tobs the second (first) image will be be missed unless the first (second) image arrives at
the beginning (end) of the observing run.

We expect that the rate R of the BBH mergers and their redshift distribution pb(zs|~⌦) will
be accurately measured from the large (⇠ 106) number of unlensed events that will dominate
the data+. However, these quantities are currently poorly known. To forecast the expected
precision in measuring the cosmological parameters, we take di↵erent theoretical models of
pb(zs|~⌦) assuming a BBH detection rate of R = 5⇥ 105 per year. The corresponding forecasts
are described in section 3. In section 4 we explore the e↵ect of the GW measurement errors
in the reconstruction of pb(zs|~⌦) and hence on the inference of cosmological parameters.

¶ The zmax predicted by a source population model (e.g., [48]) assumes the standard cosmology ~⌦true. For the
population models that we consider, zmax ' 20. When we consider other values of ~⌦, we rescale zmax appropriately.
+ What we measure from GW observations is the distribution pb(dL) of luminosity distance of the sources, which can
then be converted into a redshift distribution pb(zs |~⌦) assuming a set of cosmological parameters ~⌦. For the forecast
analysis presented in this paper, we create a luminosity distance distribution from a redshift distribution model,
assuming standard cosmological parameters ~⌦true. By varying ~⌦, we can then obtain di↵erent redshift distributions
which we use to model the time delay distribution for that specific value of ~⌦.

Cosmological 
parameters
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It is now easy to see from equation (11) why the cosmological parameters a↵ect the
lensing optical depth and hence the number of detected lensed events. The first term describes
a purely geometrical e↵ect of how the comoving volume at a given redshift varies with a
change in cosmological parameters. The second term describes the change in the distribution
of lenses due to changes in the structure formation. Third shows how the fractional area
covered by lenses at a given redshift varies due to the geometric e↵ect.

2.2.2. Expected distribution of lensing time delays: In the SIS lens model, the time delay
between the two images is given by (see, e.g. [49]):

�t(z`,�, zs, y, ~⌦) =
32 ⇡2 y

c

✓�
c

◆4
(1 + z`)

D`(z`, ~⌦)D`s(z`, zs, ~⌦)

Ds(zs, ~⌦)
, (16)

where y is the projected location of the source on the lens plane (in units of rE). We
compute the expected time delay distribution p(�t | ~⌦) for di↵erent values of the cosmological
parameters ~⌦ by marginalising the distribution of time delay over all other parameters
~� ⌘ {y,�, z`, zs} on which the time delay depends.

p
⇣
�t | ~⌦

⌘
=

Z
p
⇣
�t | ~�, ~⌦

⌘
p(~� | ~⌦) d~�, (17)

where p(~� | ~⌦) denotes the expected distribution of the source position y, lens velocity
dispersion �, lens redshift z` and source redshift zs, given the set of cosmological parameters
~⌦. If we assume isotropy of space, the distribution of y is independent of the cosmological
parameters. Hence

p(~� | ~⌦) = p(y) p(�, z`, zs | ~⌦), (18)

where p(y) / y with y = (0, 1]. Above, p(z`,�, zs | ~⌦) can be further split as

p(�, z`, zs | ~⌦) = p(�, z` | zs,⌦) pb(zs | ~⌦), (19)

where pb(zs | ~⌦) is the expected/measured distribution of source redshifts, while p(�, z` | zs,⌦)
is computed from the di↵erential optical depth [equation (11)]

p(�, z` | zs, ~⌦) / d⌧
dz`d�

(zs, ~⌦). (20)

Thus, the essential ingredients for modelling the expected number of lensed events and their
time delay distribution are:

• The redshift distribution of GW sources: We expect that this can be measured with
su�cient precision from the large number ⇠ 106 of unlensed events that will dominate
the data (see, e.g., [42]). In section 3 we forecast the prospective constraints on
cosmological parameters assuming various theoretical models of the source redshift
distribution (figure 1). In section 4 we study how uncertainties and errors in inferring
the source redshift distribution can a↵ect the constraints on cosmological parameters
(figure 2).
• A halo mass function model: This will need input from cosmological simulations. We

show in section 5 that a wrong choice of the HMF model can bias our inference of
cosmological parameters. However, if the right HMF model is one among the many
models that we consider, Bayesian model selection can be used to identify the right
model.

Lens parameters and 
source position
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distribution (figure 1). In section 4 we study how uncertainties and errors in inferring
the source redshift distribution can a↵ect the constraints on cosmological parameters
(figure 2).
• A halo mass function model: This will need input from cosmological simulations. We

show in section 5 that a wrong choice of the HMF model can bias our inference of
cosmological parameters. However, if the right HMF model is one among the many
models that we consider, Bayesian model selection can be used to identify the right
model.

Δt(zℓ, σ, zs, y, ⃗Ω) =
32π2 y

c
(1 + zℓ) DℓDℓs

Ds ( σ
c )

4

(Currently assume SIS lens)
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FIG. 1. Left: Expected number of lens pairs for di↵erent values of ~⌦ in flat ⇤CDM model, assuming a merger rate R = 5 ⇥ 105 yr�1 and
observation time period Tobs = 10 yrs. Right: The strong-lensing time-delay distributions for di↵erent values of cosmological parameters:
Increasing H0 (⌦m) shifts the peak of the distribution towards smaller (larger) time-delay values. Dashed lines show the actual distributions
p(�t | ~⌦) while the solid lines show the distribution of time delays observable in a period of 10 yrs.

where ⇤(~⌦,Tobs) is the expected total number of lensed events
observed within the observation period as predicted by the
cosmological model with parameters ~⌦. Assuming that di↵er-
ent BBH mergers are independent events, the likelihood for
observing the set of time delays {�ti} can be written as

p
⇣
{�ti} | ~⌦,Tobs

⌘
=

NY

i=1

p
⇣
�ti | ~⌦,Tobs

⌘
. (0.6)

p(�ti | ~⌦,Tobs), can be thought of as “model” time-delay
distribution p(�t | ~⌦,Tobs) evaluated at the measured �ti,
whose shape is governed by the cosmological parameters ~⌦.
p(�t | ~⌦,Tobs) is obtained from the expected time delay distri-
bution p(�t | ~⌦), after applying the condition that we can not
observe the time delays which are greater than the observation
time Tobs:

p
⇣
�t | ~⌦,Tobs

⌘
/ p
⇣
�t | ~⌦

⌘
(Tobs � �t)⇥(Tobs � �t), (0.7)

where ⇥ denotes the Heaviside function. We evaluate the
posterior p(~⌦ | N, {�ti}) on a finely meshed grid spanning
the space of cosmological parameters ~⌦. The likelihood
p(N, {�ti} | ~⌦,Tobs) requires the calculation of the expected
total number of lensed events ⇤(~⌦,Tobs) and the expected time
delay distribution p(�t | ~⌦) for di↵erent values of ~⌦. Indeed
these quantities depend on the distribution of the source and
lens properties, such as the redshift distribution of BBH merg-
ers and the halo mass function. In this work, we assume that
these properties are known from other observations.

We compute the expected number of lensed binaries using
the following integral

⇤(~⌦,Tobs) = R
Z zmax

s

0
pb(zs|~⌦) P`( zs|~⌦) dzs

⇥

Z Tobs

�t=0
p(�t|~⌦) (Tobs � �t) d�t,

(0.8)

where R is the BBH merger rate, pb(zs|~⌦) is the redshift distri-
bution of merging binaries and P`(zs|~⌦) is the strong lensing
probability for the source redshift zs. Here we assume that the

GW detectors are able to detect all the merging binaries out to
zmax. For 3G detectors, this is a good assumption for the zmax
values that we use 2.

Similarly, we compute the expected time delay distribution
p(�t | ~⌦) for di↵erent values of the cosmological parameters
~⌦ by marginalising the distribution of time delay over all other
parameters ~� ⌘ {y,�, z`, zs} on which the time delay depends
[see Eq.(0.2)]:

p
⇣
�t | ~⌦

⌘
=

Z
p
⇣
�t | ~�, ~⌦

⌘
p(~� | ~⌦) d~�, (0.9)

where p(~� | ~⌦) denotes the expected distribution of the impact
factor y, lens velocity dispersion �, lens redshift z` and source
redshift zs, given the cosmological parameters ~⌦.

We assume that redshift distribution pb(zs | ~⌦) will be known
with adequate precision from the observation of the larger
number of unlensed events, which will dominate the data. For
illustration, we take the model described in [67] as the true
model of pb(zs). The lensing optical depth ⌧(zs, ~⌦) depends
on the source redshift zs, the assumed cosmology ~⌦, and a
model of the lens distribution [see Eq.(0.1)]. We model the
lens distribution using the halo mass function, which gives the
distribution p(�, z`) of � and z`. We consider the halo mass
function model described in [68], but use an additional model
[69] to check the bias introduced by using a wrong model in the
parameter inference (see Supplemental Material). Finally, the
distribution of impact parameter y, py(y) / y, with y 2 [0, 1].
This corresponds to a uniform distribution of lensed sources in
the lens plane within the Einstein radius.

Figure 1 illustrates the imprint of cosmology on the number
of lensed events observable for a period of ten years as well as
the distribution of time delays. The number of lensed events in-
crease with increasing H0 and ⌦m. The peak of the distribution
shifts towards smaller time-delay values with increasing H0,

2 The zmax predicted by a source population model (e.g., [67]) assumes the
standard cosmology ~⌦true. When we consider other values of ~⌦, we rescale
zmax appropriately.

Expected number of lensed events (10 yrs) Lensing time delay distribution

Assuming flat LCDM model 

[Jana et al PRL 130, 261401 (2023)]
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and towards larger values with increasing ⌦m. Even though
the impact of varying cosmology on the time delay distribution
appears small by eye, the Bayesian approach delineated in this
section is able to adequately capture these imprints to provide
O(1%) constraints.

EXPECTED CONSTRAINTS ON COSMOLOGICAL
PARAMETERS
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FIG. 2. Left panel: Expected posterior distributions (68% and 95%
credible regions) of H0 and ⌦m computed from the time delay dis-
tribution and the number of lensed events separately, along with the
combined posterior (shown in orange). We assume a BBH merger rate
R = 5 ⇥ 105 yr�1 and total observation time period Tobs = 10 yrs. The
“true” cosmology (dashed cross-hairs) is recovered within the 68%
credible interval (orange shade), with H0 = 67.8 ± 1.1 km s�1Mpc�1

and ⌦m = 0.3142 ± 0.0056. Right panel: A comparison of the the
combined posterior obtained from GW lensing with the same obtained
from CMB observations by Planck. While the orange contours as-
sume that the �8 parameter is well-measured from other observations,
the grey contour corresponds to 95% credible region of the posterior
marginalized over �8 parameter.

To assess the ability of our method to constrain cosmologi-
cal parameters, we choose a “true” cosmology ~⌦true = {H0 =
67.3, ⌦m = 0.316}. We further assume that the “true” halo
mass model is described by [68], as implemented in the hmf-
calc package [70], and the “true” source distribution is given
by [67]. We assume a total observing period Tobs = 10 yrs
and a BBH merger rate R = 5 ⇥ 105 yr�1. We neglect the
selection e↵ects in the detection as 3G detectors are expected
to detect all the BBHs out to large distances (dL ⇠ 1000 Gpc).
We compute the expected number ⇤ of lensed events making
use of Eq.(0.8). To simulate one observational scenario where
N events are detected, we draw one sample from a Poisson
distribution with mean ⇤. Further, we draw samples {�ti}Ni=1
from p(�t | ~⌦true,Tobs) [see Eq.(0.7)].

Using N and {�ti}Ni=1, we evaluate the posterior described
in Eq. (0.3) for di↵erent values of ~⌦. We assume uniform
priors on H0 and ⌦m, so that the final posterior is given by the
product of the likelihoods p(N | ~⌦,Tobs) and p(�ti | ~⌦,Tobs).
Figure 2 shows these two likelihoods as well as the posterior
on H0 and ⌦m obtained from combining these two likelihoods.
We find that the posteriors are centred around the true values
of cosmological parameters. Further, the constraints on ~⌦
are found to be H0 = 67.8 ± 1.1 and ⌦m = 0.314 ± 0.006
(68% credible intervals of marginalised posteriors). These
constraints are comparable to those derived from the CMB

[43] 3. Additionally, they probe a very di↵erent redshift regime
(z ⇠ 10 as compared to z ⇠ 1000 probed by the CMB) and
have di↵erent systematics.

While we have assumed a BBH merger rate of R = 5 ⇥
105 yr�1, the true merger rate is uncertain as of now. Hence we
repeat these calculations assuming a more moderate merger
rate of R = 5 ⇥ 104 yr�1 and a pessimistic rate of R = 2.5 ⇥
104 yr�1. This will, in turn reduce the observed number of
lensed events over the observational period of Tobs = 10 yrs.
The expected posteriors on cosmological parameters assuming
the three di↵erent merger rates is shown in Fig.3. As expected,
a smaller merger rate (resulting in a smaller number of lensed
events) increases the width of the posteriors, although the true
cosmology continues to be recovered within the 68% credible
interval.

FIG. 3. Expected posterior distributions of H0 and ⌦m from a 10-year
observation period, assuming di↵erent values for the merger rate R
(shown in the legend). A lower merger rate (producing a smaller
number of lensed events) will result in less precise estimates of the
cosmological parameters.

We also illustrate the ability of this method to constrain
parameters of some more general cosmological models. In
particular, we consider wCDM model [43] with two parameters
~⌦ = {⌦m, w0}. In this part, we fix the Hubble constant H0 to
its “true” value, mimicking a situation where it will be well
measured from low-redshift observations. As done earlier, we
compute the expected number of lensed events and model time
delay distributions using Eqs. (0.8) and (0.7). We choose a
“true” cosmology ~⌦true = {⌦m = 0.203, w0 = �1.55}. We

3 Note that we have set all other parameters of the ⇤CDM model to the best
fits values provided by [43]. In order to make a fair comparison, we do
the same for the Planck posteriors as well. However, the uncertainty in
some of the other parameters, in particular �8, will have an imprint on
the precision with which H0 and ⌦m could be constrained. Therefore, in
addition, we show the posteriors that are marginalized over �8 as well in
Fig. 2. The marginalized constraints are significantly worse, so we need a
complimentary probe to achieve better constraining power.

[Jana et al PRL 130, 261401 (2023)]
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FIG. 1. Left panel: The power spectrum of linear perturbations as predicted by the CDM model as well as the WDM model with di↵erent values
of mwdm (in keV). Half-mode scales for di↵erent mwdm are shown by the filled circles. Middle panel: HMF for CDM and WDM at redshift z = 0.
Solid and dashed lines represent the Behroozi [1] and Jenkins [2] HMF models, respectively. Note the suppression in the number density of
lower mass halos in the WDM model. Filled circles with di↵erent colours denote the half mode mass scale for di↵erent mwdm. Right panel: The
distribution of the velocity dispersion of lenses produced by the CDM and WDM halos. Here also the solid and dashed lines represents the
Behroozi and Jenkins HMF models. Reduction in number density is reflected as reduction of the low � halos. Filled circles denote the velocity
dispersion of the corresponding half mode mass.

forming gravitationally bound states around them [38]. GW
emission from such objects could be detected by various GW
detectors [39–42]. FDM can also be indirectly detected using
pulsar timing arrays if the oscillation frequency falls within
their detection band [43].

Gravitational lensing of GWs o↵er yet another avenue to
probe the nature of DM (see, e.g. [44–51], for some recent
work). The next-generation (XG) ground-based GW detectors
will detect millions of binary black-hole mergers (BBH) out to
high redshifts (z ⇠ 10�100) [52]. About 0.1�1% of them will
be strongly lensed by the galaxies and clusters hosted in these
DM halos, producing multiple copies of the GW signals. The
time delay between the lensed copies of these GW signals can
be accurately measured. The exact fraction of lensed mergers
and the distribution of lensing time delay will depend on the
mass distribution of lenses at various redshifts [53] as well
as cosmological parameters [54]. In this letter, we propose a
statistical probe to constrain the mass of the WDM particle
using a catalogue of strongly lensed GW detections. If the DM
is warm, this will hinder the formation of low-mass halos. This
suppression in the the abundance of low-mass halos will result
in a reduction in the number of lensed events with small time
delays, as small time delays are mostly produced by low mass
lenses.

Our proposal is to look for the imprints of WDM on the
number of lensed signals, as well as on the distribution of their
time delays. This approach is closely connected to our earlier
work [54] on constraining the cosmological parameters from
strongly lensed GW signals. Our method does not rely on the
accurate knowledge of the source location of the individual
signals or the properties of the corresponding lenses. Indeed,
the number of lensed events as well as the time delay distribu-
tion will also depend on the distribution of source properties
(e.g., mass and redshift distribution of BBHs [55–57]) as well
as the lens properties (e.g., the mass function of the DM halos
[58] and the lens model [59, 60]). If the distributions of the
source and lens properties are known from other observations
or theoretical models (e.g., from the observation of unlensed
GW signals and cosmological simulations), then the mass of
the WDM can be inferred from the observed number of lensed

events and their time delay distribution.
We forecast that BBH observations during 10 yrs of oper-

ation of XG detectors [61, 62] will be to provide constraints
(m�1
wdm < 0.035 � 0.056 keV�1) are significantly better than the

current constraints (mwdm > 3 � 5 keV). We simply translate
the constraints on mwdm to mass of FDM particle (m ). An
optimistic assumption of merger rate will give us the constraint
m > 7.3 ⇥ 10�19eV, which is almost three order of magnitude
improvement over existing bounds.
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FIG. 2. Expected distributions of time delay between strongly lensed
GW signals, corresponding to di↵erent values of mwdm. Note the
suppression in number of lensed events compared to CDM, especially
for lower time delays, which is the reflection of absence of the lower
mass halos for smaller mwdm. The time delay distributions measurable
from an observation period of 10 yrs are shown by dashed lines. The
vertical line indicates the period of 10 yrs.

Warm dark matter:— Free streaming of WDM particles
suppress primordial perturbations at scales smaller than the
free streaming scale. Fitting functions for modelling the WDM
transfer function have been proposed in di↵erent studies [18,
63, 64]. They give us a prescription to convert the power
spectrum Pcdm(k) of linear perturbations in the CDM model to
the same in the WDM model [Pwdm(k)], through the transfer

[Jana et al PRL in press, arXiv:2408.05290]
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FIG. 3. Left panel: Posterior distribution of m�1
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R = 5 ⇥ 105 yr�1 and Tobs = 10yrs. Gray shaded region represents the 90% quantile of the combined posterior, yielding an upper limit of
m�1
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Tobs = 10 yrs. Right panel: 38%, 50% and 68% credible intervals (denoted by di↵erent shades) of the distributions of 90% upper limit of m�1

wdm

obtained from ⇠ 1000 recovery tests for di↵erent values of R and Tobs.

the HMFcalc package [66] which uses the formula given in
[65] and a transfer function given in [64]. This is just a simple
translation, in order to be more rigorous, one needs to use
the HMF in FDM. Even though approximate, this gives us
an idea of the prospective constraints on FDM using future
observations of GW strong lensing.
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the constraints on m�1
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show the translated constraints on m . Di↵erent dashed lines are for
di↵erent detection rates R, assuming Tobs = 10 yrs.

We also check whether we will be able to measure the mass
of the DM particle when it is actually warm. To check this, we
simulate an observing scenario using the HMF of the WDM
model with mass mwdm = 9 keV. Other details of the analysis
are kept the same. We consider an optimistic (R = 5⇥105 yr�1)
and pessimistic (R = 5 ⇥ 104 yr�1) detection rates. As seen in
Fig. 5, the true value of mwdm is recovered within 68% credible
interval.

Systematic errors:— We have investigated various sources
of systematic errors in deriving constraints on the nature of
DM using future observations of strongly lensed GW signals.

One potential source of systematic error is the HMF that is
used to model the mass and redshift distribution of lenses. To
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FIG. 5. Posterior distribution of mwdm assuming that the true nature
of the DM is described by the WDM model with mwdm = 9 keV
(the yellow solid line in the middle). The plot shows the expected
posteriors for Tobs = 10yrs assuming optimistic (R = 5 ⇥ 105 yr�1)
and pessimistic (R = 5 ⇥ 104 yr�1) detection rates. Vertical dashed
lines represent the 90% credible region of the posteriors.

get a sense of the systematic errors, we simulate the population
of lenses using one HMF model (Behroozi [1]) and use another
model (Jenkins [2]) for our inference, both implemented in the
HMFcalc package [66]. As we see in left panel of Fig. 6, the
true value (m�1

wdm = 0) is not recovered if we use the wrong
HMF model in our inference. This underlines the need of
accurate models of the distribution of lens properties.

Though the true value of mwdm is not recovered in the param-
eter inference, we perform a Bayesian model selection study
using these two HMF models to calculate the Bayes factor
(ratio of Bayesian evidences) between them. We repeat this
exercise over a large number of random realisations of the
same observing scenario, and find that the Bayes factor over-
whelmingly prefers the true HMF model (right panel of Fig. 6).
Thus, if the correct HMF model is among the set of models
that we consider for the parameter inference, we expect it to
have the largest Bayesian evidence, thus will help us to evade
systematic errors to a good extent.

Expected constraints from 10 yr obs of 3G detectors

[Jana et al PRL in press, arXiv:2408.05290]



Summary 

• The first observation of  gravitationally lensed GWs should happen int the next few years. Most likely 
lenses are galaxies and clusters. 


• Next generation GW detectors will observe tens of  thousands of  strongly lensed GWs. Their exact 
number and the time delay distribution will depend on a combination of  the properties of  the 
sources, lenses and cosmology. 


• This will enable interesting probes of  cosmology (expansion rate, nature of  dark matter, etc). 


• Probing the intermediate redshift regime (z ~ 2 — 10) that is not well probed by other 
observations. 
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Challenges 

• Accurate identification of  strongly lensed GW events (or, modeling the 
contamination accurately). 


• Uncertainties in measuring the source population properties (likely to be 
negligible in XG). Selection effects. 


• Accurate modeling of  the lens population. Need input from cosmological 
simulations and EM lensing observations. 

Some ongoing work [Jana et al CQG 41 245010 (2024), Jana et al (In Prep), K. Maity et al (In Prep)] 


