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Timeliness of the topic

• Gravitational Wave (GW) astronomy promises to observe different kinds of 
astrophysical sources. 


• Remarkable achievements in observations! Compact binary coalescence (CBC).


• Most binaries are expected to circularize before entering LIGO band (Peters & 
Mathews 1963)


• What about the dynamical captures? eccentric or scattering/hyperbolic orbits? 
(Vittori et. al. 2012, Nagar et. al. 2021) Topic of the present talk..


• We need the exact waveform, and modified search algorithm (Morras et. al. 
2022, Albanesi et. Al. 2025) --- a long way to go!
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Hyperbolic encounters: a brief history from the past

• Hyperbolic interactions and their implications in gravitational wave (GW) 
astronomy are relatively new, and explored extensively in recent times.


• Hyperbolic encounters in dense clusters are relevant


• These events are burst-like and transient 


• We would need modified search algorithm and waveform modeling to detect 
these signals 


• How about the stochastic background from these encounters? We will discuss 
on this aspect..



Part - I	

The model of interaction



Trajectory: orbital set up
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• Initial position and angle: 


• Initial velocity: 


• Masses of the binary: 


• Impact parameter: 


• The eccentricity: e


• Periapsis/closest distance: 


• Angle at the periastron: 


• Coordinate:  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Trajectory: orbital set up (a correction!)
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• We are interested to study hyperbolic 
encounters inside a closed cluster of finite 
radius ( )


• Typically, in a hyperbolic event, the initial 
distance between the binary constituents is 
infinite!


• However, if we assume the cluster is closed, 
the initial distance  can be at max , 
not infinite!


• Similarly , the initial angle between the 
binary constituents, can have a wide range!  

Rc

ri ∼ Rc

θi



Hyperbolic interaction inside a closed cluster: a closer look 	
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• Initial velocity:  (virial velocity)


• Masses of the binary: 


• Periapsis/closest distance: 


• Position: 


• Coordinate: 


• Angle at the periastron: 

ri & θi

vi

m1 & m2

rp

r(ϕ)

ϕ

ϕ0

ri



Hyperbolic interaction inside a closed cluster: a closer look 	

• Conservation of momentum and energy are 
assumed


• Earlier works are based on scattering problem 
assuming initial distance to be infinity


• Need to redefine the initial conditions based on 
local parameters — initial distance ( ), initial 
angle ( ), and , which we assumed as virial 
velocity


• While , the cluster's radius taken as , 
we assume . Decide  from 
threshold signal to noise ratio (SNR), and 
from Schwarzschild radius
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• Initial position and angle: 


• Initial velocity:  (virial velocity)


• Masses of the binary: 


• Periapsis/closest distance: 
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The orbital parameters: new terms 	
 	

The eccentricity , angle at periapsis , and periapsis distance  
e ϕ0 rp
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The orbital parameters: new terms 	
 	

The eccentricity , angle at periapsis , and periapsis distance  
e ϕ0 rp

e2 = 1 +
L2vi2

G2M2 {1−( 2GM
v2

i ) 1
ri },
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Lvi cos θi

L2/ri − GM
= −

Lvi

GM { cos θi
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With


 , and , 


Momentum 
remains finite, and we 

obtain

ri → ∞ θi → 0

L = rivi sin θi

e2 = 1 +
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Lvi

GM
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The orbital evolution in time 	
 	

• The orbital trajectory can be characterized by


                              


which follows the initial condition, at . 

r(ϕ) =
L2/(GM)

1 + [L2/(GMrp) − 1] cos(ϕ − ϕ0)

ϕ = ϕ0, r = rp



The orbital evolution in time 	
 	

• Figure represents the  plot 


• We have  , and 



• Note  , where “dot" is a 
differentiation with respect to time


• The   represents the closest 
distance,  


• Lesser the , stronger the interaction!

ϕ vs t
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The power radiation in time and frequency domain 	
 	

θi = 1.5 × 10-7

θi = 2.0 × 10-7

θi = 2.5 × 10-7
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Quick summary 	
 	

• We revised our model of interaction. 


• The orbital dynamics explicitly depends on the initial conditions, namely 
initial distance and angle.


• The power peaks at the periapsis, the closest distance that can be 
approached. 


• The obtained the power spectrum is consistent with existing literature! 



Part - II	

The stochastic background



Stochastic gravitational wave background (SGWB) from an event 	
 	

• The dimensionless GW energy density spectrum is given as (Bellido et. al. 2022, 
Maggiore 2018)


                                  


    Here ,  is the density of GW events at redshift , and  is the              


    redshifted frequency. Other quantities have usual meanings.  


• To obtain the above expression, we need to find the density of event rates for 
hyperbolic events inside a cluster.

ΩGW( f ) =
1
ρc ∫

∞

0

dz
1 + z

N(z)
dEGW( fr)

d ln fr

ρc = 3H2
0 /(8πG) N(z) z fr



Single hyperbolic event (inside a closed cluster)	

 	

• Given a fixed , the solid angle  as a function of  and , which results 
in a detectable  signal 
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Single hyperbolic event (inside a closed cluster)	

 	

• Given a fixed , the solid angle  as a function of  and , which results 
in a detectable  signal 
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Note that  is 
obtained from the SNR 
constrained (detector 

dependent), and  from the 
condition , where  is 

the Schwarzschild radius 
(orbital model dependent). 
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Single hyperbolic event (inside a closed cluster)	

 	

• Given a fixed , the solid angle  as a function of  and , which results 
in a detectable  signal 


     


• Assuming that the objects inside the cluster are 


   uniformly distributed, the probability of selecting a 


   fraction of particles fall within the above solid angle is 
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Single hyperbolic event (inside a closed cluster)	

 	
• Given a fixed , the solid angle  as a function of  and , which results in a detectable  signal 




     


• Assuming that the objects inside the cluster are  uniformly distributed, the probability of selecting a   fraction of 
particles fall within the above solid angle is 


   


• Therefore, for an individual compact object inside the cluster, number of events per unit time is given as                    




• In this,  is the collision time, and  is number density of compact objects inside 
the cluster, and  is the lower radial cutoff.  Note  is the number of compact objects which is redshift 
dependent!
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Single hyperbolic event (inside a closed cluster)	

 	
• Therefore, for an individual compact object inside the cluster, number of events per unit 

time is given as                    


• In this,  is the collision time, and  is number density of 
compact objects inside the cluster, and  is the lower radial cutoff.  Note  is the 
number of compact objects which is redshift dependent! 


• Hence by combining  both, we get
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Single hyperbolic event (inside a closed cluster)	

 	
• Assuming that the objects inside the cluster are  uniformly distributed, the probability of 

selecting a   fraction of particles fall within the above solid angle is 


   


• Therefore, for an individual compact object inside the cluster, number of events per unit 

time is given as                    


• In this,  is the collision time, and  is number density of 
compact objects inside the cluster, and  is the lower radial cutoff.  Note  is the 
number of compact objects which is redshift dependent!


• By ignoring small scale structure, we have . 
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SGWB from hyperbolic events 	
 	

ET CE DECIGO ET CE DECIGO

Background from hyperbolic encounters for different cluster properties and binary 
parameters



SGWB from hyperbolic events 	
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• Total contribution to the SGWB 
from weakly hyperbolic 
encounters ( , where  
is a small number).


•  In this plot, we consider





• The bottom line represents the 
pessimistic scenario, while the 
top line is the optimistic scenario

e ∼ 1 + ϵ ϵ

5 km/s ≤ vi ≤ 18km/s
{rimin, rimax} = {0.03pc,9.03pc}
15M⊙ ≲ m1 ≤ 50M⊙

5M⊙ ≲ m2 ≤ 25M⊙



Discussions	

 	

• In this work, we studied the SGWB from hyperbolic encounters inside bound compact 
clusters. Specifically, we investigate weakly hyperbolic encounters with eccentricities 
close to one, and compute the energy density of the SGWB. 


• As discussed, the SGWB from these encounters falls within the range of third 
generation GW detectors, primarily Cosmic explorer.


• Given we accumulate more encounters, namely by considering more encounters from 
the core to the edge of the cluster, the chance of detectability increases. 


• A more robust computation is needed to model these backgrounds. 


• Detection of these encounters, in conjunction with observations of binary mergers, can 
help us constrain characteristics of BH populations.



