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Cosmological constant (Einstein, 1917)

S = −M2
Pl

16π

∫
d4x
√
−g(R + Λ) ≡ −M2

Pl

16π

∫
d4x
√
−gR − %vac

∫
d4x
√
−g

Λ – cosmological constant, «Λ-term»

g – determinant of the metric tensor gµν , MPl = 1.22× 1019 GeV – Planck mass

The energy-momentum tensor of vacuum:

T (vac)
µν = gµν%vac , %vac =

M2
Pl

16π
Λ

The Einstein equations with Lambda-term included:

M2
Pl

8π

(
Rµν −

1
2
gµνR

)
≡ M2

Pl

8π
Gµν = T (matt)

µν + %vacgµν

In homogeneous, isotropic, and 3D-flat space: ds2 = dt2 − a2(t)dr2
The first Friedman equation:

3H2M2
Pl

8π
= T 0

0 = %matt + %vac , H =
ȧ

a
− the Hubble parameter
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Vacuum energy problem

Contradiction between theoretical estimates of the magnitude of %vac and
observational constraints on its possible value.

It is tempting to identify vacuum energy with cosmological dark energy (DE),
since they have the same equation of state: P = −%.

P and % are respectively the pressure and energy densities.

DE makes ∼ 70% of the total cosmological energy density:

%DE ∼ 1 keV/cm3 ≈ 10−47 GeV4

Theoretical estimates give:

either infinitely large value

or, in the case of cancellations of vacuum energies of bosonic and fermionic
vacuum fluctuations, the result of the order of the SUSY breaking scale:

%vac
SUSY ∼ m4

SUSY ∼ 1055%DE , mSUSY ∼ 100 GeV

During cosmological evolution vacuum energy underwent colossal jump during
phase transitions from a symmetrical phase to a phase with broken symmetry.
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Structure of the QCD-vacuum

Proton mass mp ∼ 1 GeV:

p = uud , mq ∼ 5 MeV =⇒ m ≈ (15MeV − Ebind ) & 0.01mp – ???
Ebind is the binding energy of quarks in a proton.

The missing contribution:

nontrivial properties of the QCD vacuum =⇒ condensates of quark and
gluon fields:

〈q̄q〉 6= 0 , 〈GµνG
µν〉 6= 0 , %(cond)

vac ≈ 1GeV4

Quarks inside a proton destroy the condensates and the proton mass:

mp = 2mu + md−%(cond)
vac l3p ∼ 1GeV, lp ∼ 1/GeV is the proton size

The energy density of the condensate must be negative and by 47 orders of
magnitude larger than the observed value %DE ≈ 10−47 GeV4.

Something else, except for quarks and gluons, "lives" in vacuum and this
"something" (new field – ??) compensates %vac by 47 orders of magnitude.
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The first model of dynamical reduction of vacuum energy

Dolgov, 1982 (Nuffield Workshop on the Very Early Universe, proceedings)

Sφ =

∫
d4x
√
−gL =

∫
d4x
√
−g
[
1
2
gµν∂µφ∂νφ− U(φ,R)

]
Equation of motion for the homogeneous field φ in FLRW-metric:

φ̈+ 3Hφ̇+ ∂U/∂φ = 0 , U =
1
2
(
βR + m2)φ2

When βR < 0 and |βR| > |m2| the EoM in de Sitter space-time has unstable
solutions, exponentially rising with time, since (m

(eff )
φ )2 < 0 at R = const.

With rising φ the initial exponential expansion will asymptotically transform into a
power-law one:

a(t) ∼ exp(Hvact) =⇒ φ ∼ t and a(t) ∼ tκ, where κ = const

Reverse reaction of φ to the cosmological expansion leads to the transformation
of the exponential expansion law into the Friedmann law, despite the presence of
nonzero vacuum energy.
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Shortcomings of this simple model:

The energy-momentum tensor of field φ is not proportional to gµν :
Tµν 6= Λgµν =⇒ the vacuum energy does not vanish, even asymptotically

The change in the expansion regime is achieved due to the weakening of the
gravitational interaction. The gravitational coupling constant decreases with
time, first exponentially, and then as GN ∼ 1/t2.

If such a change in GN took place in the early universe and later somehow
stabilised, then this mechanism could explain the hierarchy of the
gravitational and electroweak scales.

Other models:

Dolgov, Kawasaki, 2003 (arXiv:astro-ph/0307442, astro-ph/0310822)

Lint =
∂µφ∂

µφ

2R2

Dolgov, Urban, 2008 (arXiv:0801.3090): several different types of the
interaction potential between the curvature scalar and a scalar field.

However, in each case, the transition to the canonical cosmology dominated by
usual matter was not realised.
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Generalisation of the model

LF =
1
2
φ2 [βRF (R, φ) + m2]

Arbuzova, Dolgov, 2025 (arXiv: 2502.05581 [gr-qc]):

Lf =
1
2
φ2 [βRf (φ) + m2] ≡ 1

2
[
φ2m2 + βRQ(φ)

]
, Q(φ) = φ2f (φ)

Equation of motion for homogeneous field φ:

gµνDµDνφ+ m2φ+
1
2
βR∂φQ = φ̈+ 3Hφ̇+ m2φ+

1
2
βR ∂φQ = 0

Dµ is the covariant derivative in FLRW-metric and ∂φQ = ∂Q/∂φ.

The energy–momentum tensor of φ is defined as:

Tµν =
2√
−g

δS

δgµν
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Energy-momentum tensor

Сorrespondingly

Tµν = (∂µφ)(∂νφ)− (1/2)gµν
[
gαβ(∂αφ)(∂βφ)−m2φ2

]
−βQ(φ) (Rµν − gµνR/2) + β

(
DµDν − gµνD

2)Q(φ)

The covariant derivatives of Q(φ):

DµQ = (∂φQ)∂µφ, D2Q = ∂2
φQ∂µφ∂

µφ+ ∂φQD
2φ

The trace of the energy-momentum tensor:

T ν
ν = −(∂φ)2(3β∂2

φQ + 1) + 2m2φ2 + βQR+3β
[
(∂φQ)m2φ+ βR(∂φQ)2/2

]
For a special case Q = φ2 the trace is:

T ν
ν = −(6β + 1)(∂µφ)(∂µφ) + β(6β + 1)Rφ2 + 2(1 + 3β)m2φ2

This is the well known result. Note, that T ν
ν = 0 for β = −1/6 and m = 0.
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More Complicated Model

To cure the problems of a simpler model described above we consider:

Q̄(φ,M0, k) = φ2(1 + σφ2/M2
0 )k ,

M0, k are some constant parameters to be fixed below. We take σ = ±1.

The derivatives of Q̄ over φ are given by:

∂φQ̄ =
2kσφ3(1 + σφ2/M2

0 )k−1

M2
0

+ 2φ(1 + σφ2/M2
0 )k ,

∂2
φQ̄ =

4(k − 1)kσ2φ4(1 + σφ2/M2
0 )k−2

M4
0

+

10kσφ2(1 + σφ2/M2
0 )k−1

M2
0

+ 2(1 + σφ2/M2
0 )k
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Curvature Scalar

Taking trace of the Einstein equations

M2
Pl

8π

(
Rµν −

1
2
gµνR

)
= %vacgµν + T (matt)

µν

we find the relation:

R

(
βQ̄ +

3β2(∂φQ̄)2

2
+

M2
Pl

8π

)
=

(∂φ)2(3β∂2
φQ̄ + 1)− 2m2φ2 − 3βm2φ(∂φQ̄)− 4%vac − T̃ ν

ν

T̃ ν
ν is the trace of the energy-momentum tensor of the other kinds of matter.

This equation allows to express R through φ and its first derivative.
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Dimensionless Variables

Two differential equations that govern cosmological evolution:

φ̈+ 3Hφ̇+ m2φ+
1
2
βR ∂φQ̄ = 0,

Ḣ + 2H2 = −R/6

Here R is a known function of φ and its first derivative.
Dimensionless variables:

τ = tH0, ϕ = φ/H0, h = H/H0,
d

dt
= H0

d

dτ
,

R = rH2
0 , %vac = H4

0λ, Q̄ = H2
0q, M0 = H0µ.

H0 is an arbitrary normalisation constant.

We fix H2
0 = 8π %(in)

vac /(3M2
Pl), where %

(in)
vac is the original large vacuum energy.

In what follows we denote derivative over τ by prime: df /dτ ≡ f ′.
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Dimensionless Functions

Dimensionless function q is expressed through the dimensionless field ϕ:

Q̄ = φ2(1 + σφ2/M2
0 )k =⇒ q =

Q̄

H2
0

= ϕ2 (1 + σϕ2/µ2)k

The derivatives of Q̄ turn into:

∂φQ̄

H0
≡ q1 =

2kσϕ3(1 + σϕ2/µ2)k−1

µ2 + 2ϕ2 (1 + σϕ2/µ2)k
,

∂2
φQ̄ ≡ q2 =

4(k − 1)kσ2ϕ4(1 + σϕ2/µ2)k−2

µ4 +

10kσϕ2(1 + σϕ2/µ2)k−1

µ2 + 2
(
1 + σϕ2/µ2)k
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Dimensionless Equations

Finally we come to following two differential equations

h′ + 2h2 = − r

6
; ϕ′′ + 3hϕ′ + βrq1/2 = 0

Dimensionless curvature scalar

r =
(3βq2 + 1)(ϕ′)2 − 2(m/H0)2ϕ2 − 3β(m/H0)2ϕq1 − 4λ− T̃/H4

0
3β2q2

1/2+M2
Pl/(8πH2

0 ) + βq

Here q1 ≡ ∂φQ̄/H0, q2 ≡ ∂2
φQ̄ are dimensionless derivatives.

We assume:
Field φ is massless: m = 0, the matter is relativistic: T̃ ν

ν = 0.

The curvature turns into:

r0 =
(3βq2 + 1)(ϕ′)2 − 4λ

3β2q2
1/2+M2

Pl/(8πH2
0 ) + βq
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Numerical solutions: λ(in) = 104

Small time τ

0.4 0.6 0.8 1.0

50

100
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200

Evolution of 102τh, 103ϕ, 102ϕ′, (−r0)
as functions of time τ .

Large time τ

4 6 8 10

20

40

60

80

100

120

140

Evolution of 102τh, 103ϕ, 3 · 104ϕ′,
(−105r0) as functions of time τ .

The calculations are performed with β = 1, µ = 1, k = 3.
Initial values: hin = 2, ϕin = 0, and ϕ′in = 1.
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The calculations are performed with β = 1, µ = 1, k = 3.
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Compensation of Vacuum Energy

Numerical calculations demonstrate that the curvature, even for very
large initial values of |r0|, quickly tends to zero, thereby
demonstrating that the vacuum energy is indeed compensated.

Indeed:
a constant value of curvature correponds to a constant value of the
Hubble parameter and therefore to exponentially expanding de Sitter
universe.
The impact of field φ results in asimptotical vanishing of R . Thus,
the de Sitter expansion turns into power law expansion.

In other words, vacuum energy is completely compensated and we
arrive to cosmology dominated by relativistic matter.
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Asymptotical Solutions for r0 = 0:

The equations

h′ + 2h2 = − r

6
; ϕ′′ + 3hϕ′ + βrq1/2 = 0

with r0 = 0 are trivially solved analytically.

Analytical asymptotic solutions:

h(τ)→ [2(τ + τ0)]−1, ϕ′ → Cτ−3/2, ϕ→ const ,

which are in good agreement with the numerical calculations.

H(t) ∼ 1/(2t) is the canonical expression for the Hubble parameter in
cosmology dominated by relativistic matter.

Note, that numerical calculations are valid till τ ≈ 30− 40. At larger τ instability
of the numerical procedure leads to unreasonable results, but at high τ we have
accurate analytic solutions.
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Conclusion

The model suggested in this work, efficiently does the job of elimination
any original vacuum energy down to zero, and results in realistic cosmology
governed by relativistic matter.

According to the relation

R = −6(Ḣ + 2H2)

that is valid in arbitrary homogeneous and isotropic metric, the vanishing of
R leads to the equation Ḣ + 2H2 = 0 and to the Hubble parameter

H ≡ ȧ

a
=

1
2(t + t0)

and correspondingly to the scale factor rising as a(t) ∼ t1/2, which is
typical the cosmological model dominated by relativistic matter.

E.V. Arbuzova Λ-term problem 27 August 2025 19 / 22



In other words

We started with the universe with non-zero (and large) vacuum
energy. Initially the expansion was the exponential one.

Later (quite quickly) the expansion turned into a power law form
that is typical for cosmology dominated by relativistic matter.
However, the pre-existing usual matter could be strongly diluted
via initial exponential expansion and practically washed out.
On the other hand, in the process of expansion gravitational
particle production would be quite efficient that could create
enough matter for our normal universe.
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Next steps

We need to include into the model non-relativistic matter and
check if the transition to matter dominated cosmology could be
successfully achieved.
Another related problem is a possibility of description of
cosmological dark energy in the proposed framework.
Presumably it can be realised by introduction of more
complicated dependence on curvature scalar, R , analogously to
the known description of dark energy by modified gravity through
F (R) generalisation of GR.

This is supposed to be the matter of future studies.
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for the attention!
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