

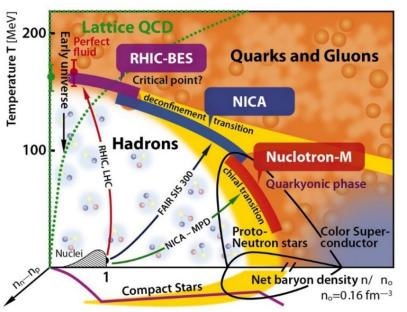
Simulation study of Σ⁰ hyperons production from NICA-MPD experiment

Yulin Wang (王玉林)

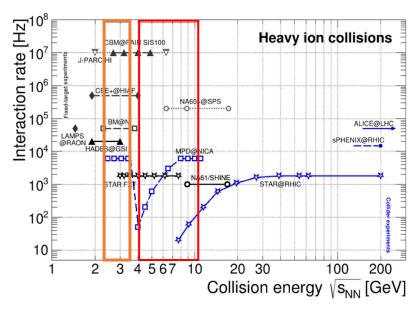
For the MPD Collaboration

Shandong University (山东大学)

Outline

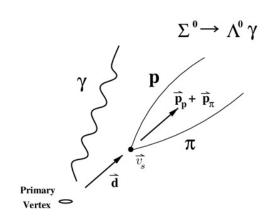


- **□** Motivation
- ☐ The NICA-MPD experiment
- □ Reconstruction methodology
- **□** Summary


Motivation

https://nica.jinr.ru/physics.php

T. Galatyuk, Nucl. Phys. A982(2019)

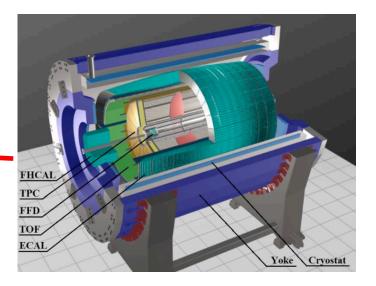


- □ QCD phase diagram describe the phase structure of strongly interacting matter and look for the first order phase transition and critical end-point
- □ NICA energy region (4 11 GeV):
 - ✓ Temperature T_{ch} ~ 120-150 MeV
 - ✓ Baryonic chemical potential μ_B = 300 600 MeV,
 - ✓ Many ongoing (NA61/Shine, STAR-BES) and future experiments (CBM) in similar energy region.

Why Study Σ^0 ?

- Σ^0 is an important particle in heavy-ion collisions, reconstruction by the decay channel with B. R. $\approx 100\%$: $\Sigma^0 \to \gamma \Lambda$
 - ✓ Feed-down contribution to photon and Λ spectrum
 - ✓ Study of strangeness production mechanisms
 - ✓ As a reference to tune the event generators and models




Physics Letters B 479 (2000)

Property	Σ^0	Λ
Quark	uds	uds
Mass	1.192 GeV/c ²	1.116GeV/c^2
Strangeness (S)	-1	-1
Isospin(I)	1	0
Spin	$\frac{1}{2}^+$	$\frac{1}{2}^+$
Lifetime	$\approx 7.4 \times 10^{-20} s$	$\approx 2.6 \times 10^{-10} \text{s}$
Decay Mode	$\Sigma^0 \to \gamma \Lambda \ (\approx 100\%)$	$\Lambda \to p\pi^- (\approx 64\%)$ $\Lambda \to n\pi^0 (\approx 36\%)$

Nuclotron-based Ion Collider fAcility

- □ NICA: International research facility in JINR, Dubna, Russia
 - ✓ Already running in the fixed-target mode Baryonic Matter @ Nuclotron (BM@N)
 - ✓ Start of operation in 2025 Multi-Purpose Detector (MPD)
 - ✓ Operating on polarized deuterons later Spin Physics Detector (SPD)
- **MPD**: One of two collider experiments at NICA to study heavy-ion collisions at $\sqrt{s_{NN}}$ = 4–11 GeV
 - ✓ Stage I: TPC+TOF+ECal+FHCal+FFD
 - √ Stage II: StageI+ITS+EndCap
- ☐ Centralized large scale and centralized Analysis Train was used to process the simulated data.

Photon Reconstruction

Two method for photon reconstruction:

- ✓ Electromagnetic calorimeter: measure the energy and position of photon
 - Number of towers :

$$N_{\text{cell}} > 2$$

• Reconstructed energy:

$$E_{cluster} > 0.05 \text{ GeV}$$

· Shower shape:

$$\chi^2 < 4.0$$

• Time of flight:

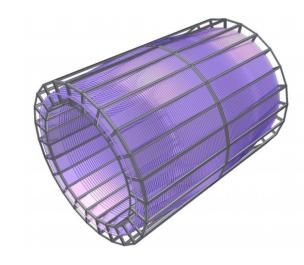
$$T_{cluster} < 2.0 \text{ ns}$$

Charge particle veto:

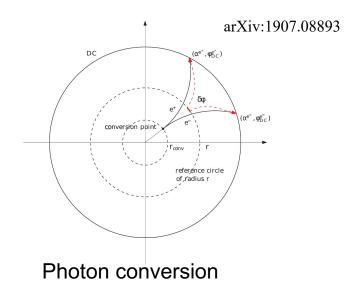
$$d\varphi^{TPC-ECal} > 10 \text{ cm}$$

 $dZ^{TPC-ECal} > 10 \text{ cm}$

✓ Photons Conversion Method (PCM): measured in the tracking system as e^+e^- conversion pairs

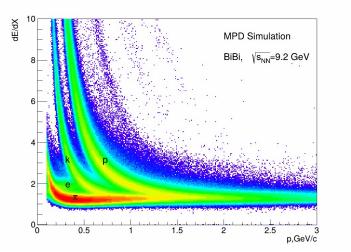

The probability of photon conversion strongly depends on the material budget

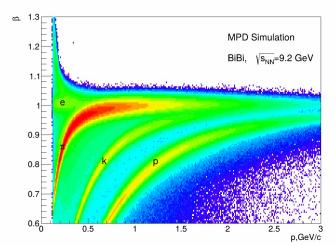
$$P = 1 - \exp\left(-\frac{7}{9} \frac{x}{X_0}\right)$$

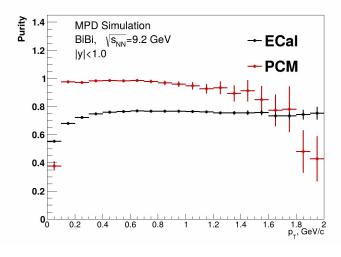

Beam pipe (r = 4cm): $0.3\% X_0$

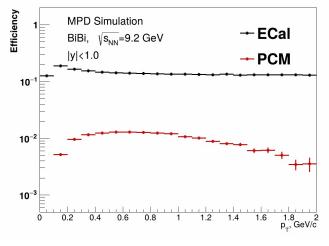
TPC structures(r = 27cm): $2.4\% X_0$

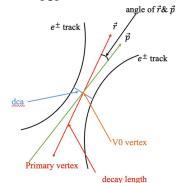
Particles 4.1(2021):55-62.




Electromagnetic calorimeter

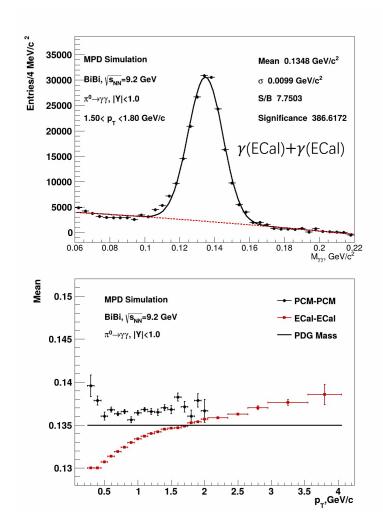

Photon Conversion Method (PCM)

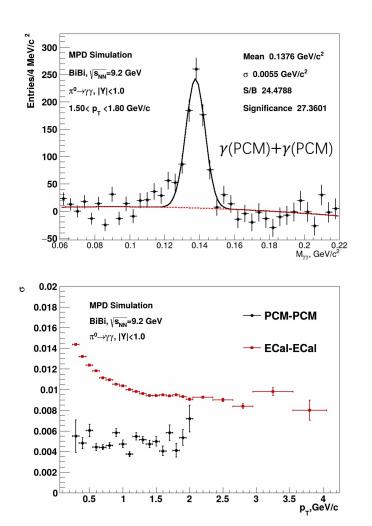



✓ For electron identification, the TPC (dE/dx) and TOF (β) is used

 e^+/e^- tracks:

- $N_{\rm hits}^{\rm TPC} > 10$
- $p_T > 0.03 \text{ GeV/c}$
- TPC: $2\sigma_{TPC}^{e}$
- TOF: $2\sigma_{TOF}^{e}$ in case of track matching to the TOF

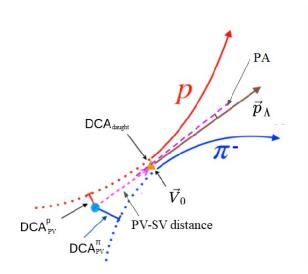


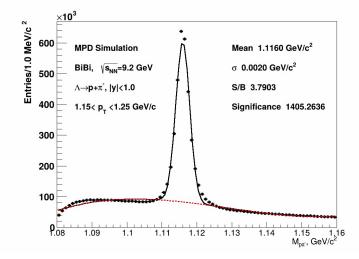

The topological structure of e^+e^- pairs:

- $dca_{e^+ to e^-} < 1.25 cm$
- $\chi_{V^0}^2 < 6.0$
- $angle_{e^+e^-} < 0.10 rad$
- $decay_{V^0 to PV} > 25 cm$
- $Mass_{e^+e^-} < 0.035 \text{ GeV/c}^2$
- $\phi_{\rm V} < 0.25 \, \rm rad$
- ✓ PCM has higher purity but lower efficiency, ECal method is more effective in high energy

π^0 Reconstruction

 \checkmark The width of π^0 reconstruction by ECal method are larger than that of by using photon conversion method


Λ Reconstruction



 Λ reconstruction by the decay channel with B. R. $\approx 64.1\%$:

$$\Lambda \rightarrow p + \pi^-$$

p and π^- are selection by TPC and TOF

 $\Lambda \rightarrow p + \pi^ p / \pi^-$ tracks:

- $N_{hits}^{TPC} > 20$
- $p_T > 0.1 \text{ GeV/c}$
- $2\sigma_{TPC}^{\pi^{-}}$ and $2\sigma_{TOF}^{\pi^{-}}$ in case of track matching to the TOF
- $\chi_{\pi^- \text{ to PV}}^2 > 7.0$
- $dca_{\pi^- to PV} > 1.5 cm$

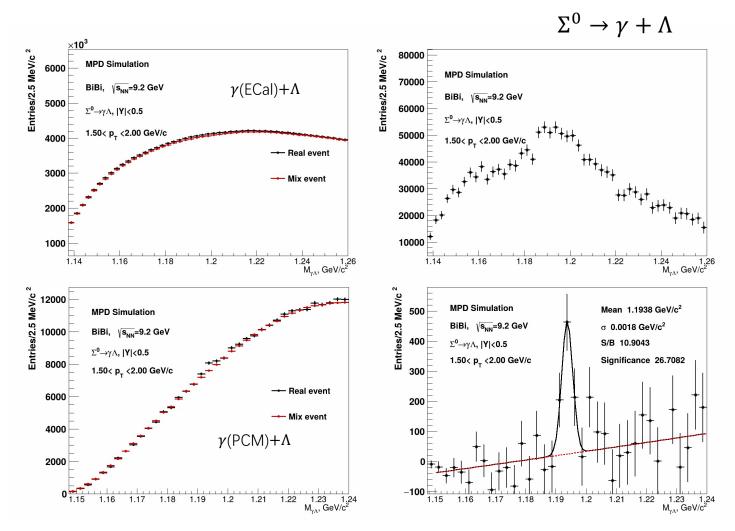
$p \pi^-$ pairs:

- $dca_{p to \pi^{-}} < 1.25 cm$
- $\chi_{V^0}^2 < 6.0$
- $angle_{p\pi^-} < 0.10 rad$
- $decay_{V^0 to PV} > 4.0 cm$

• $2\sigma_{TPC}^{p}$ and $2\sigma_{TOF}^{p}$ in case of track matching to the TOF

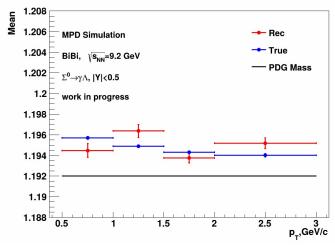
- $\chi^2_{\rm p \, to \, PV} > 3.0$
- $dca_{p to PV} > 0.4 cm$

With high S/B and Significance by using the topological structure of Λ decay


The $|M_{p\pi^-} - M_{\Lambda}| < 2\sigma_{\Lambda}$ as Λ candidate for Σ^0 reconstruction $M_{\Lambda} = 1.115683 \text{ GeV/c}^2$, $\sigma_{\Lambda} = 0.002 \text{ GeV/c}^2$

$$M_{\Lambda} = 1.115683 \text{ GeV/c}^2$$
, $\sigma_{\Lambda} = 0.002 \text{ GeV/c}^2$

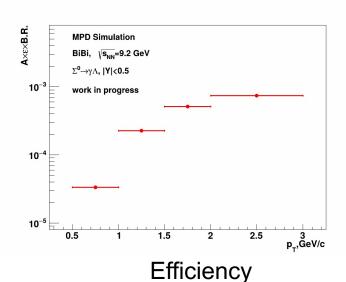
Σ^0 Reconstruction


 Σ^0 reconstruction by the decay channel with B. R. $\approx 100\%$:

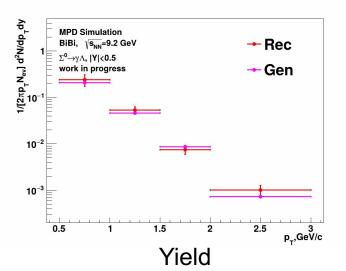
- ✓ The energy of photon from Σ^0 is very soft.
- Photon conversion method more suitable for $Σ^0$ reconstruction.
- The mix event method was used to remove the combinatorial background.
- Gaussian and polynomial function fitting are used to extract the signal

p_T Dependence

0.005 MPD Simulation Rec


0.004 $\sum_{0 \to \gamma \Lambda, |\gamma| < 0.5} \text{work in progress}$ 0.002

0.001


0.001

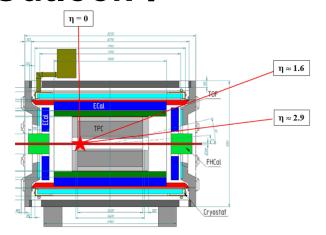
0.001

Width

Mean

 $Yield = \frac{1}{N_{event}} \cdot \frac{N_{sig}}{2\pi p_{T} dp_{T} dy} \cdot \frac{1}{A \times \epsilon \times B.R}$

$$N_{sig} = \int_{mean-2\sigma}^{mean+2\sigma} f_{Gaus}(M) dM$$

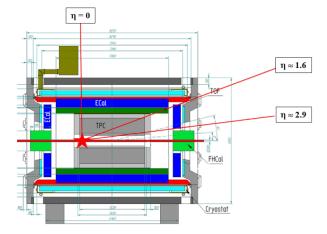

- ✓ Measurements for $Σ^0$ are possible starting from p_T ~ 500 MeV/c in a rapidity range |y|<0.5.
- \checkmark The yields obtained for $Σ^0$ by reconstruction are consistent with truly generated.

Summary

- Two methods for photon reconstruction were study :
 - ✓ ECal method is more effective in high energy.
 - ✓ Photon conversion method is a powerful tool at low momentum.
- \blacksquare Λ reconstruction were study with high high S/B and Significance .
- Photon conversion method more suitable for Σ^0 reconstruction.

Outlook:

Fixed-targe mode


- Start of MPD commissioning by the end of 2025.
- Fixed-target mode extends energy range of MPD to $\sqrt{s_{NN}}$ =2.4-3.5 GeV (overlap with HADES, BM@N and CBM).

Summary

- Two methods for photon reconstruction were study :
 - ✓ ECal method is more effective in high energy.
 - ✓ Photon conversion method is a powerful tool at low momentum.
- \blacksquare Λ reconstruction were study with high high S/B and Significance.
- Photon conversion method more suitable for Σ^0 reconstruction.

Outlook:

Fixed-targe mode

- Start of MPD commissioning by the end of 2025.
- Fixed-target mode extends energy range of MPD to $\sqrt{s_{NN}}$ =2.4-3.5 GeV (overlap with HADES, BM@N and CBM).

Backup

Physics program at MPD

G. Feofilov, P. Parfenov

Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section measurement
- Event plane measurement at all rapidities
- Spectator measurement

V. Kolesnikov, Xianglei Zhu

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Total particle yields and yield ratios
- Kinematic and chemical properties of the event
- Mapping QCD Phase Diag.

K. Mikhailov, A. Taranenko

Correlations and Fluctuations

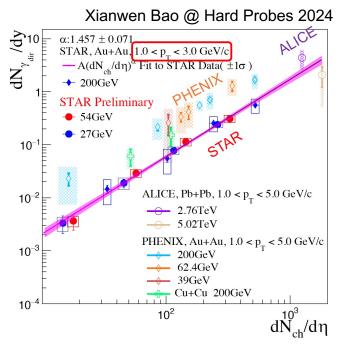
- Collective flow for hadrons
- Vorticity, A polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.
- Jet-like correlations

D. Peresunko, Chi Yang

Electromagnetic probes

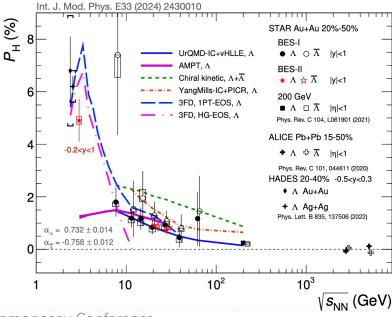
- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass dilepton spectra in-medium modification of resonances and intermediate mass region

Wangmei Zha, A. Zinchenko

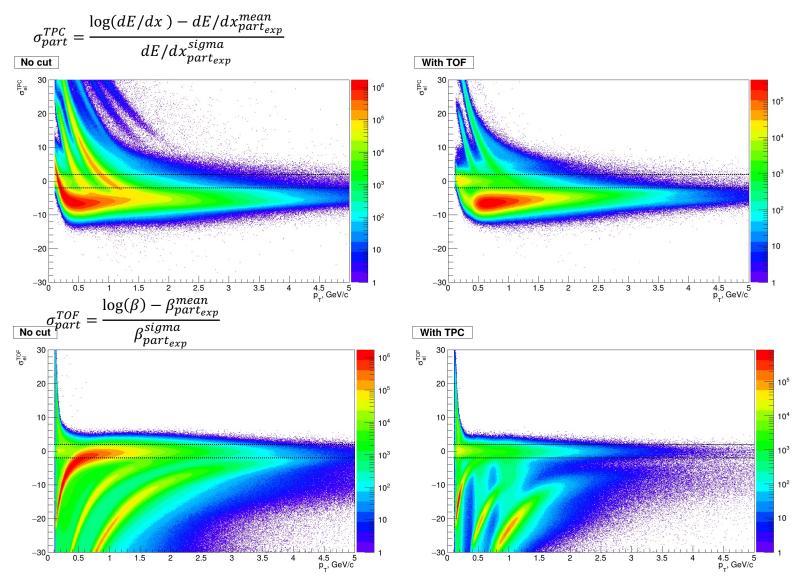

Heavy flavor

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- · Explore production at charm threshold
- ☐ Organized and developed in 5 Physics Working Groups
- Physics feasibility studies using large-scale Monte Carlo productions

Physics in NICA Energy Region


□ Direct photons

- ✓ Measurements of direct photons over centralities and energies
- ✓ Direct photon puzzle still there
- ✓ NICA can extend the study to the lower energies



- ✓ Increases towards lower energies
- ✓ Expected to be high at NICA energies

The σ^{TPC} and σ^{TOF}

dE/dx: energy measure in TPC

 $dE/dx_{part_{exp}}^{mean}$: the expected mean dE/dx value for a particle

 $dE/dx_{part_{exp}}^{sigma}$: the expected sigma dE/dx value for a particle

 β : measure in TOF

 $\beta_{part_{exp}}^{mean}$: the expected mean β value for a particle

 $eta_{part_{exp}}^{sigma}$: the expected sigma eta value for a particle