Measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ process in the ω -meson energy region with the CMD-3 detector at VEPP-2000

Tolmachev S.S. CMD-3 Collaboration

Budker Institute of Nuclear Physics

August 26, 2025

CMD-3, VEPP-2000

- VEPP-2000
- CMD-3

- $\sqrt{s} = 0.3 2 \text{ GeV}$
- Drift chamber $(\sigma_{R\phi} \sim 100 \mu m, \sigma_Z \sim 2.5 mm)$
- Calorimeters
 - Barrel: LXe + CsI
 - Endcap: BGO
- TOF system
- Muon system
- Magnetic field 1.3 T

Study of $e^+e^- \to \pi^+\pi^-\pi^0$ process

Motivation

- Second largest contribution to hadronic part of $(g-2)_{\mu}$
- Discrepancy between CMD-2 and SND (~130 nb)
- Measurement of ω -meson parameters
- Study of dynamics $(\rho \omega)$ interference in $\pi^+ \pi^- \pi^0$ channel)
 - CMD-2
 - SND

Key analysis tasks

- Measurement of $\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$ cross section
- Determination of ω -meson parameters from cross section approximation
- Study of ρ - ω interference
- Calculation of contribution to $(g-2)_{\mu}$

Data. Luminosity. Energy measurement

- 4 scans in the energy range $\sqrt{s} = 0.65 0.98 \text{ GeV}$
- RHO2013 (47 points) $L_{int} \sim 13$ pb⁻¹
- RHO2018 (69 points) $L_{int} \sim 34$ pb⁻¹
- Luminosity measured via $e^+e^- \rightarrow e^+e^- \ (\Delta_{sys} \sim 1.5\%)$
- Beam energy measured by Compton backscattering ($\Delta_{sys} \sim 60 \text{ keV}$)
- Beam energy spread $\sigma_E \sim 250 \text{ keV}$

- Luminosity
- Energy measurement

Event selection criteria

"Good" track:

- $N_{\rm hits} > 10$
- $1 < \theta < \pi 1 \text{ rad}$
- $\rho < 0.2 \text{ cm}$
- |z| < 10 cm
- dE/dx < 5000
- $0.2 < P/E_{\rm beam} < 0.8$

General criteria:

- $N_{\text{good tr}} = 2$
- $Q_1 + Q_2 = 0$
- $N_{\text{good }\gamma} \geq 2$
- $0.25 < |\Delta \phi| < \pi 0.25$
- $0.4 < (P_1 + P_2)/2E_{\text{beam}} < 0.75$

"Good" photon:

- $E_{\gamma} > 50 \text{ MeV}$
- $0.84 < \theta_{\gamma} < \pi 0.84$ rad

Kinematic fit:

- $\chi_{\pi\pi\gamma}^2 > 40$
- $2 \chi^2_{\mu\mu\gamma} > 100$

Main background processes:

- $\pi^+\pi^-\gamma$
- \bullet $e^+e^-\gamma$
- $\bullet \ \mu^+\mu^-\gamma$

• KinFit

Efficiency. Trigger efficiency correction

Simulation

- $\rho\pi$ mechanism for 3π production
- ISR accounted for

Definitions:

•
$$\varepsilon_{MC} = \frac{N_{sel}^{MC}}{N_{tot}^{MC}}$$
, $\sim 3\%$ due to π^0

•
$$\delta_{\mathrm{trig}} = 1 - \frac{\varepsilon_{\mathrm{trig}}^{exp}}{\varepsilon_{\mathrm{trig}}^{MC}}$$

$$\varepsilon_{\rm trig} = 1 - (1 - \varepsilon_{\rm ch})(1 - \varepsilon_{\rm neut})$$

$$\varepsilon_{\rm neut} = \frac{N_{\rm both}}{N_{\rm ch} + N_{\rm both}}$$

$$\varepsilon_{\rm ch} = \frac{N_{\rm both}}{N_{\rm neut} + N_{\rm both}}$$

Track reconstruction corrections

- Two event classes $(N_{2tr,\pi^0}$ and $N_{2tr+1tr,\pi^0})$ selected with tighter π^0 criteria
- $120 < M_{\gamma\gamma} < 150 \text{ MeV}$
- For integral correction per point, $\delta_{\pm} = 1 \frac{\varepsilon_{\pm}^{exp}}{\varepsilon_{\pm}^{MC}}$ distribution was folded with angular distribution of events
- For points with insufficient statistics, weighted average over the season was taken
- At peak < 0.5% per track (RHO2018)

π^0 reconstruction corrections

- Two event classes $(N_{2tr,\pi^0}$ and $N_{2tr})$ selected with tighter M_{miss} criteria
- $40 < M_{miss} < 180 \text{ MeV}$
- For integral correction per point, $\delta_0 = 1 \frac{\varepsilon_0^{exp}}{\varepsilon_0^{MC}}$ distribution was folded with momentum distribution of lost π^0
- For points with insufficient statistics, weighted average over the season was taken
- RHO2018 $\sim 2.5\%$
- RHO2013 $\sim 7.5\%$

Event counting. Visible cross section calculation.

- Fit to invariant mass distribution of photon pair with smallest $\chi^2_{\pi^+\pi^-\pi^0}$ in signal hypothesis
- Sig(MC + res) + Bkg(MC + uniform)
- RHO2018
- $E_{beam} = 391.5 \text{ MeV}$
- $L_{int} \sim 5 \text{ pb}^{-1}$
- $N_{sig} \sim 200k \ N_{bkg} \sim 1k$

$$\sigma_{\text{vis}} = \frac{N_{sig}}{\varepsilon_{MC}L(1 - \delta_{+})(1 - \delta_{-})(1 - \delta_{0})(1 - \delta_{trig})}$$

Visible cross section approximation

$$\begin{split} \sigma_{\rm vis} &= \frac{1}{\sqrt{2\pi\sigma_E^2}} \int \exp\left(\frac{(\sqrt{s'} - \sqrt{s})^2}{2\sigma_E^2}\right) \\ &\times \int_0^{1-s_{th}/s'} F(x,s') \sigma_{\rm born}(s'(1-x)) dx \, d(\sqrt{s'}) \end{split}$$

$$\sigma(s)_{\rm born} = \frac{F_{3\pi}^{\rho\pi}(s)}{s^{3/2}} \left| \sum_{V=\ \rho,\omega,\phi,\omega',\omega''} e^{i\phi_{\omega V}} \sqrt{\frac{\sigma_0(V\to3\pi)M_V}{F_{3\pi}^{\rho\pi}(M_V^2)}} \frac{\Gamma_V M_V^2}{D_V(s)} \right|^2 \begin{array}{c} \text{phase of vector} \\ \text{mesons} \\ \bullet \\ F_{3\pi}^{\rho\pi}(s) \text{ - phase space} \\ \text{in } \rho\pi \text{ mechanism} \end{array}$$

$$F_{3\pi}^{\rho\pi}(s) = \frac{(4\pi\alpha)^2 \sqrt{s}}{12\pi} \int \left[\vec{P}_+ \times \vec{P}_-\right]_\perp^2 \left| \sum_{i=\ 0,+,-} \frac{g_{\rho^i\pi\pi}}{D_{\rho^i}(P_{\rho^i}^2)} \right|^2 d\Phi_{3\pi}$$

- Isrsolver
- SND

- V vector meson
- $\phi_{\omega V}$ relative mixing phase of vector
- in $\rho\pi$ mechanism
- $M_{\omega}, \Gamma_{\omega}, \sigma_0(\omega \rightarrow$ 3π), $\sigma_0(\rho \to 3\pi)$, $\phi_{\omega\rho}$ - free parameters
- $\phi_{\omega\phi} = 162^{\circ} \text{ (SND)}$

Cross section approximation. Comparison with other experiments.

Comparison with other experiments.

- BaBar
- Belle II
- SND
- CMD-2

Approximation parameters. Comparison with other experiments.

- Black line statistical error
- Red line total error
- Agreement of ω -meson parameters

Systematic uncertainties

Source	Contribution (%)	Estimation method
Luminosity	1.5	Difference between $e^+e^- \rightarrow$
		e^+e^- and $e^+e^- \to \gamma\gamma$
π^0 reconstruction	0.5	Comparison with cross section
		without π^0 reconstruction
Selection criteria	0.5	Variation of selection criteria
Background subtraction	0.3	Different event counting proce-
		dures
ISR in MC	0.3	Different cross-sections
Energy spread	0.3	Calculation of radiative correc-
		tion without taking account for
		beam energy spread
Track reconstruction	0.2	Calculation in different selec-
		tion criteria
Trigger efficiency	< 0.1	_

Total systematic uncertainty of cross section: 1.8%

Systematic uncertainties for Γ_{ω} , $\sigma(\rho \to 3\pi)$ and $\phi_{\omega-\rho}$ were estimated from parameter spread in different independent datasets.

Contribution to $a_{\mu}^{had,LO}$.

$$a_{\mu}^{had,3\pi} \ = \frac{1}{4\pi^3} \int_{s_{\rm min}}^{s_{\rm max}} \sigma_{\rm born}^{3\pi}(s) |1 - \Pi(s)|^2 \cdot K(s) \, ds$$

 $\sigma_{\rm born}^{3\pi}(s)$ – Born cross section function after approximation of experimental data $a_{\mu}^{had,3\pi}$ in range $0.62<\sqrt{s}<1.1~GeV/c^2$

- CMD-3 $(44.3 \pm 0.2 \pm 0.8) \times 10^{10}$ (Function) [Preliminary]
- BaBar $(42.91 \pm 0.14 \pm 0.55 \pm 0.09) \times 10^{10} \ (\Delta = (1.4 \pm 1) \times 10^{10})$

 $a_{\mu}^{had,3\pi}$ in range $0.65 < \sqrt{s} < 0.98~GeV/c^2$

- CMD-3 $(38.0 \pm 0.2 \pm 0.8) \times 10^{10}$ (Function) [Preliminary]
- \bullet CMD-3 $(38.2\pm0.2\pm0.8)\times10^{10}$ (Linear approximation, $\Delta=(0.2\pm1.2)\times10^{10}$)

• Vacuum polarization operator

Conclusion

- Preliminary measurements of the 3π cross section with CMD-3 detector at VEPP-2000 ($\Delta_{stat} \sim 0.5\%$, $\Delta_{sys} \sim 1.8\%$)
- Determining ω -meson (in agreement with other measurements) and $\rho \omega$ -interference parameters
- Calculation of contribution to $a_{\mu}^{had,3\pi}$
- The work was supported by grants: the Russian Science Foundation No 23-42-10025; the Belarusian Republican Foundation for Basic Research No. F23RSF-118.

Backslides. Track reconstruction corrections (Calculation)

Two event classes $(N_{2tr,\pi^0}$ and $N_{2tr+1tr,\pi^0})$ selected with tighter π^0 criteria

• $120 < M_{\gamma\gamma} < 150 \text{ MeV}$

Backslides. π^0 reconstruction corrections (calculation)

Two event classes $(N_{2tr,\pi^0} \text{ and } N_{2tr})$ selected with tighter M_{miss} criteria

• $40 < M_{miss} < 180 \text{ MeV}$

Backslides. ρ contribution subtraction

Backslides. Systematics. Cross section comparison (RHO2013)

Backslides. Systematics. Cross section comparison (RHO2018)

Backslides. Track reconstruction correction. π^+ vs π^- comparison (RHO2018)

Backslides. BCS comparison (RHO2018)

Backslides. Efficiency systematics. ISR in MC. Model/

Backslides. Approximation parameters comparison in different CMD-3 scans

