Study of the $e^+e^- \to K_S K_L \pi^0$ process with the CMD-3 detector at the VEPP-2000 collider

A. Semenov¹, B. Shwartz¹

¹Budker Institute of Nuclear Physics, Novosibirsk

22nd Lomonosov Conference on Elementary Particle Physics 26 August, 2025

Purpose

The purpose is to study $e^+e^- \to K_S K_L \pi^0$ in the range $E_{c.m.}$ from the production threshold 1130 MeV to 2 GeV. The current study is based on integrated luminosity of 188.6 pb^{-1} .

Motivation:

- Studying the interaction of light quarks
- Contribution into the vacuum polarization used in the calculation of the muon anomalous magnetic moment $(g-2)_{\mu}$
- ullet Comparison of the cross-section energy dependants with the spectrals from au-lepton decays.
- Studying the production dynamic of the process (VMD).
- Proving the isotopic ratio in conjunction with the processes $K^+ K^- \pi^0$, $K^* K (K_S K^{\pm} \pi^{\mp})$

About $e^+ e^- o K_S K_L \pi^0$

$$M \propto \frac{J_{\mu} \cdot [\vec{P_1} \times \vec{P_2}]^{\mu}}{D_{\gamma}(s)} \cdot \left(\sum_{V = \phi, \omega, \rho, \dots, I = 0, 1} \frac{A_V e^{i\alpha_V}}{D_V(s) \cdot D_{K^*}(Q_{K\pi^0})} + \sum_{V = \rho, \dots, I = 1} \frac{B_V e^{i\beta_V}}{D_V(s) \cdot D_{\phi}(Q_{K\bar{K}})} \right)$$

$$\downarrow I_{R} \downarrow I_{R} \downarrow$$

Isotopic ratio:
$$M_{K_{S}K_{L}\pi^{0}} = T_{1b} - \frac{1}{\sqrt{3}}T_{0}; M_{K^{+}K^{-}\pi^{0}} = T_{1b} + \frac{1}{\sqrt{3}}T_{0};$$

$$M_{K^{\pm}K^{0}\pi^{\mp}} = \pm T_{1a} + \sqrt{\frac{2}{3}}T_{0};$$

$$\sigma_{K_{S}K_{L}\pi^{0}} = \sigma_{K_{S}K^{\pm}\pi^{\mp}} - \sigma_{K^{+}K^{-}\pi^{0}} + Br(\phi \to K\bar{K}) \cdot \sigma_{\phi\pi^{0}}$$

Analysis $e^+ \ e^- o K_S \ K_L \ \pi^0$ with CMD-3

We study the process in channels:

$$K_S \to \pi^+ \pi^- \text{ and } \pi^0 \to \gamma \gamma$$

$$\sigma_B = \frac{N_{selected} - N_{background}}{\varepsilon_{rec} \cdot \varepsilon_{trigger} \cdot L \cdot (1 + \delta_{rad})}$$

- Get the number of events
- Suppress/subtract background
- Get the efficiency
- Get the radiation corrections
- Estimate the systematic uncertainties

Selection criteria:

ociccion critcha.		
1.	$N_{tr}=2$ ($ ho_{tr}<$ 6 cm)	
2.	$N_{K_S} = 1$	
3.	$\xi_{\pm} < 1.6 (dE/dx)$	
4.	$N_{trhit} > 10$	
	$(\theta_{tr} \in (0.8; \pi - 0.8))$	
5.	$\cos XY_{K_S} > 0.8$	
6.	$ ho_{\perp K_{\!S}} > 0.1$ cm	
7.	$N_{ph} > 1$	
-		
8.	$E_{phlxe,bgo} > 15 MeV$	
10	$E_{\sim} < 2 \cdot E_{\text{beam}} - 2 \cdot M_{\text{K}}$	

Reconstructed masses at $E_{c.m.} = 1675 \, MeV$

Simulation

Experimental data

Recoil mass (1675 MeV and 1950 MeV)

$$2E_{beam} = E_{K_S} + E_{K_L} + E_{\gamma_1} + E_{\gamma_2}; \ 0 = \vec{P}_{K_S} + \vec{P}_{K_L} + \vec{P}_{\gamma_1} + \vec{P}_{\gamma_2}$$

Simulation

Experimental data

Determining the number of events

We determine the number of events with π^0 by an unbinned fit of the invariant mass of two photons of the joint distribution of the signal and sideband ranges with different weights (+1 and -1) in the RooFit package.

- By subtraction we suppress the events without K_S -meson (assuming uniform distribution for background)
- By fitting we determine the number of events with π^0 -meson *The width of the signal region is $\pm 30~MeV$

Number of events $E_{cm} = 1650 \, MeV$

Experimental data

$$S(x; x_0, \sigma, k) = \begin{cases} exp(-\frac{v^2}{2} + k \cdot (v + \frac{x - x_0}{\sigma})), & \frac{x - x_0}{\sigma} \le -v \\ exp(-\frac{(x - x_0)^2}{2\sigma^2}) & |\frac{x - x_0}{\sigma}| < v , v = \frac{1}{2} \\ exp(-\frac{v^2}{2} + (1 - k) \cdot (v - \frac{x - x_0}{\sigma})), & \frac{x - x_0}{\sigma} \ge v \end{cases}$$

Number of events

Experimental data, 1950 MeV

Experimental data, 1150 MeV

$$B(m; m_0, c, p) = m \cdot [1 - (\frac{m}{m_0})^2]^p \cdot exp[c \cdot (1 - (\frac{m}{m_0})^2)]$$

Cross section $e^+ \, e^- o K_S \, K_L \, \pi^0$

Specifics:

- Excluded 2017 season
- Simulation based on the detector state
- $\varepsilon(K_SK_L\pi^0\pi^0)\approx 3\%$

Cross section fit

- Main contribution: φ(1020), φ(1680)
- Require the simultaneous fit with the processes $K^+K^-\pi^0$ and $K_SK^\pm\pi^\mp$

Cross section $e^+ e^- \rightarrow K_S K_L \pi^0$

The total number of the detected events is 17982.7. The preliminary result:

The resulted points are averaged with 25 *MeV* step for the better comparing. Systematic uncertainties is 8.3%.

Background processes

Based on simulation by MHG2000 generator.

•
$$e^+e^- \rightarrow K_SK_L(\gamma)$$

•
$$e^+e^- \to \pi^+\pi^-\pi^0\pi^0$$

$$\bullet$$
 $e^+e^- o K_SK_L\pi^0\pi^0$

Invariant mass of photons

The distributions for $e^+e^- \to K_S K_L \pi^0 \pi^0$ process (main systematic uncertainty).

Invariant mass of tracks

Recoil mass

Conclusion

Results:

- Obtain the preliminary cross section of the $e^+e^- o K_SK_L\pi^0$ process
- The systematic uncertainty is 8%

Plans:

- ullet Subtract the background process $e^+e^- o K_S K_L \pi^0 \pi^0$
- Simultaneous fit with the processes K^+ $K^ \pi^0$, K^* K $(K_S$ K^{\pm} $\pi^{\mp})$
- Obtain $K_S K_L \eta$, $K_S K_L \pi^0 \pi^0$ processes

Systematic uncertainties

Criteria	$\delta\sigma$,%
$\xi(dE/dx)$	3.5
N_{trhit}	0.3
$ ho_{\perp K_{\underline{S}}}$	1.1
$cos(\vec{r}_{K_S}, \vec{P}_{K_S})_{XY}$	0.5
E_{γ}	0.1
\sum	3.7

Selection criteria	3.7%
Determination of event numbers	4%
Contribution of $K_S K_L \pi^0 \pi^0$	6%
Registration of charged pions	1%
Registration of photons	1%
Radiation corrections	1%
Luminosity	1%
\sum	8.3%

Selection results

Correction of photon angles

Experimental data at $E_{c.m.} = 1680 \; MeV$

Trigger efficiency

SND and BaBar results

Isotopic ratio: $$\begin{split} \sigma_{\textit{K}_{\textit{S}}\textit{K}_{\textit{L}}\pi^{0}} &= \sigma_{\textit{K}_{\textit{S}}\textit{K}^{\pm}\pi^{\mp}} - \sigma_{\textit{K}^{+}\textit{K}^{-}\pi^{0}} + \\ \textit{Br}(\phi \rightarrow \textit{K}\bar{\textit{K}}) \cdot \sigma_{\phi\pi^{0}} \end{split}$$

Study of $e^+ \, e^- o K_S \, K_L \, \pi^0$ with BaBar

Approach:

Selection criteria:

- At least two tracks
- At least four photons
- Cluster with ISR photon (> 3 GeV)
- Good K_S candidate
- Photons from π^0 decay with energy more than 0.1 GeV
- Cluster or K_L candidate with energy more than 0.2 GeV

- Kinematic fit 4C χ^2
- Background subtraction (shape from simulation)

 Results:
- Cross section
- Ontributions K^*K и $\phi \pi^0$ are obtained Disadvantages:
- Systematic from ISR
- Systematic from registration of K_L
- lacktriangle Systematic from background subtraction pprox 10%
- Big systematic of efficiency below 1.5 GeV
- Efficiency ≈ 3%

Study of $e^+ \, e^- o extit{K}_{S} \, extit{K}_{L} \, \pi^0$ with SND

Selection criteria:

- No track
- No parallel clusters
- At least 6 photons with energy more than 20 MeV
- Three good $\pi^{\mathbf{0}}$ candidates
- Two π^0 with invariant mass of K_S

Approach:

- Kinematic fit $3\pi^{\mathbf{0}} + 1K_{\mathcal{S}} \chi^{\mathbf{2}}$
- Fit of $M_{recoil} = M_{K_I}$
- Background shape from simulation
 Results:

Cross section

Disadvantages:

- Efficiency from 6% to 2%
- Systematic from shape of M_{recoil}
- Systematic from registration of K_L
- Summary systematic ≈ 12%