Benchmarking Hadronic Models in Geant4 for Detector Simulations

S. Savenkov, A. Svetlichnyi, I. Pshenichnov

Institute for Nuclear Research of the Russian Academy of Sciences
Moscow Institute for Physics and Technology

Outline

- Introduction: HGND detector in the BM@N experiment at NICA
- Monte Carlo modelling of the HGND prototype
- Comparison of the detector modelling with different hadronic models:
 - Energy profiles
 - Secondary nuclei
- Conclusions

The BM@N experiment at NICA, Dubna

- Heavy ion (Xe¹²⁴) beam in fixed target geometry with up to 4A GeV kinetic energy.
- The research program of the experiment includes the studies of equation of state and reaction dynamics, for which the collision geometry determination is important.
- Therefore the robust simulation is critical for the design, evaluation and calibration of the detector.
- BmnRoot framework based on Geant4 is used.

Highly Granular Neutron Detector in the BM@N experiment

- Highly Granular Neutron Detector (HGND) is a detector used by BM@N for registration of 0.3 – 4 GeV neutrons.
- A prototype of the detector has been created and tested in a BM@N run.
- For a reliable modelling of the detector response it is important to understand the difference in results obtained with different hadronic interaction models.
- Possible differences will contribute to the systematic uncertainties of measurements with HGND.

Monte Carlo modeling of the HGND prototype

- Neutrons and protons with kinetic energy of 600 MeV and 3800 MeV propagating along the main axis of the HGND prototype were modelled with Geant4 v11.2.
- Two Reference Physics Lists were employed: FTFP_BERT and QGSP_BIC.
- Bertini intranuclear cascade (BERT) is used in modelling with FTFP_BERT to simulate neutron and proton induced reactions up to 6 GeV. A smooth transition from BERT to Fritiof parton model (FTFP) is employed between 3 and 6 GeV.
- Binary Light Ion Cascade (BIC) is used in modelling with QGSP_BIC to simulate neutron and proton induced reactions up to 6 GeV.
- BIC is used to simulate nucleus-nucleus collisions up to 6 GeV in both Physics Lists.

J. Allison et al., Recent developments in Geant4, Nucl. Inst. Methods Phys. Res. Sect. A 835 (2016), 186-225

Comparison of multiplicity of secondary nuclei produced in the HGND prototype by neutrons and protons (FTFP_BERT)

- Slight difference is seen at initial energy of 600 MeV.
- Identical distributions at initial energy of 3800 MeV.
- Only neutrons are considered in the following.

Comparison of multiplicity of secondary nuclei produced in the HGND prototype by neutrons (FTFP_BERT vs QGSP_BIC)

- Much more fragments with 7<Z<14 are produced with QGSP_BIC compared to FTFP BERT by 600 MeV neutrons.
- This difference is less prominent for 3800 MeV neutrons.

Secondary nuclei produced in the lead absorber layers and transported to the next scintillator layers

Fragments with Z>7 do not propagate to the scintillator layers. This compensates the difference between models.

Secondary nuclei produced in the copper absorber layers and transported to the next scintillator layers

Fragments with Z > 7 do not propagate to the scintillator layers. This compensates the difference between models

Energy deposition profiles from 600 MeV neutrons

• More energy (up to 20%) is deposited by secondary nuclei while using QGSP BIC (including the VETO layer)

Energy deposition profiles from 3800 MeV neutrons

 More energy is deposited by nuclei in the scintillator layers after the lead absorbers while using FTFP BERT

• Less difference between the results of FTFP_BERT and QGSP_BIC in the VETO layer and the scintillator layers after the copper absorbers.

Conclusions

- Deposited energy profiles in the HGND prototype depend on the choice of the Geant4 hadronic models.
- Using Binary cascade model results in noticeably higher production of IMFs in absorber material, especially for lower-energy primary particles. However, these fragments do not propagate to the scintillator.
- The measurements of the HGND energy profiles can be proposed as a benchmark for Geant4 hadronic interaction models.

Thank you for your attention!

Backup

Binary cascade vs Bertini cascade, IAEA spallation data

Energy deposition profiles from 3800 MeV protons

Same results as for neutrons, but EM processes are more prominent in the energy deposition

Neutrons from EM dissociation in the BM@N experiment

- The Coulomb field of the target nucleus induces the photodisintegration of the Xe¹²⁴ nucleus from the beam. At these energies the channel of a single neutron emission is dominating
- The mean kinetic energy of neutrons is equal to 3.8 GeV. They are emitted in a narrow frontal cone.
- The resulting quasimonoenergetic neutron beam is suitable for the calibration of HGND detector and its prototype.

Pshenichnov, I. A., et al.
Electromagnetic dissociation of nuclei: From LHC to NICA.
International Journal of Modern Physics E (2024): 2441007.