2025.8.26 TWENTY-SECOND LOMONOSOV CONFERENCE ON ELEMENTARY PARTICLE PHYSICS

Spontaneous CP violation, sterile neutrino dark matter and leptogenesis

Norimi Yokozaki (Zhejiang university)

Jiang, **NY**, Phys.Lett.B 862 (2025) 139331

Strong CP problem

 The QCD vacuum state, which is an eigenstate of the both small and large gauge transformations, is parametrized by theta-term

$$\mathcal{L} \ni \frac{g_s^2 \bar{\theta}}{16\pi^2} \operatorname{tr}(G_{\mu\nu} \tilde{G}^{\mu\nu}) \qquad \bar{\theta} = \theta_0 + \operatorname{arg} \det(M_u) + \operatorname{arg} \det(M_d)$$

Non-zero $\bar{\theta}$ induces neutron EDM

$$(\propto \bar{\theta})$$

$$|d_n| < 1.8 \times 10^{-26} e \, \mathrm{cm}$$
 (from experiment)

[Phys.Rev.Lett. 124 (2020) 8, 081803]

Constraint: $\bar{\theta} \lesssim 10^{-10}$

Expectation: $\bar{\theta} \sim 1$

No anthropic reason

tension

Spontaneous CP violation (SCPV)

- The CP is an exact symmetry of the Lagrangian but the ground state breaks it
- The theta-term is absent and all the couplings are real
- The CP symmetry is spontaneously broken and the CKM phase is generated, keeping $arg \det(M_a) \approx 0$

 $\bar{\theta} < 10^{-10}$

Challenges:

- To keep arg $\det(M_q) < O(10^{-10})$
 - To generate the baryon asymmetry of the universe (no CPV in the Lagrangian, c.f. Sakharov 3 conditions)
 - Unlike axion solution, dark matter is not included

The minimal model (Bento-Branco-Parada)

- A pair of vector-like heavy quarks (down-type) and a new scalar that has a complex VEV are introduced
- The new scalar couples to down-type quarks to explain the CPV phase in CKM
- 4 x 4 matrix takes a from such that $arg \det(M_d) \approx 0$

The mass term: $\overline{d'_L}M_dd'_R + h.c.$

complex elements that lead to the CKM phase

More details

Extended down-quark mass matrix

$$y_{d,ij}\overline{Q_L}Hd_{j,R}+h.c.$$
 SM Yukawa interaction
$$+\underbrace{\left[(k_iS+k_i'S^*)\overline{D_L}d_{i,R}+\mu_D\overline{D_L}D_R'\right]+h.c.}_{B_{d,i}}$$

The complex mass parameters, after $S o \langle S
angle$

 Introduction of a discrete symmetry to obtain the VEV with a complex phase (the phase direction has to be fixed)

$$S \to -S$$
, $D_L \to -D_L$, $D_R' \to -D_R'$

• Because of Z_2 symmetry, there are two degenerated (and discrete) vacua, for $\langle S \rangle = \pm C$

More details

Extended down-quark mass matrix

$$y_{d,ij}\overline{Q_L}Hd_{j,R}+h.c.$$
 SM Yukawa interaction
$$+\underbrace{\left[(k_iS+k_i'S^*)\overline{D_L}d_{i,R}+\mu_D\overline{D_L}D_R'\right]+h.c.}_{B_{d,i}}$$

The complex mass parameters, after $S o \langle S
angle$

 Introduction of a discrete symmetry to obtain the VEV with a complex phase (the phase direction has to be fixed)

$$S \to -S, \ D_L \to -D_L, \ D_R' \to -D_R'$$

• Because of Z_2 symmetry, there are two degenerated (and discrete) vacua, for $\langle S \rangle = \pm C$ This causes the cosmological domain wall problem

if $T_{max} > |\langle S \rangle|$

Dangerous operators

The solution can be easily spoiled by higher dimensional operators

$$M_d = \begin{pmatrix} m_{d,ij} & 0 \\ B_{d,k} & \mu_D \end{pmatrix} + \delta M_d \qquad \delta M_d = \begin{pmatrix} \delta a & \delta b \\ 0 & \delta c \end{pmatrix}$$

For instance,

$$\delta b \ni rac{c_b \left\langle S \right\rangle + c_b' \left\langle S \right\rangle^*}{M_{**}} \overline{Q_L} H D_R'$$
 allowed by the symmetry

$$\theta < \mathcal{O}(10^{-10})$$
 \Longrightarrow $\left(|\langle S \rangle| < 10^8 \text{ GeV} \text{ for } M_* = M_{\text{PL}} \right)$

The symmetries alone are difficult to suppress the dangerous operators

Dangerous operators

The solution can be easily spoiled by higher dimensional operators

$$M_d = \begin{pmatrix} m_{d,ij} & 0 \\ B_{d,k} & \mu_D \end{pmatrix} + \delta M_d \qquad \delta M_d = \begin{pmatrix} \delta a & \delta b \\ 0 & \delta c \end{pmatrix}$$

For instance,

$$\delta b \ni \frac{c_b \langle S \rangle + c_b' \langle S \rangle^*}{M_*} \overline{Q_L} H D_R'$$
 allowed by the symmetry

$$heta < \mathcal{O}(10^{-10})$$
 $T_{max} < |\langle S \rangle| < 10^8 \ \mathrm{GeV}$ for $M_* = M_{\mathrm{PL}}$

The symmetries alone are difficult to suppress the dangerous operators

Challenges

- Because of the domain wall problem, $T_R < S < 10^8$ GeV
- Tension with leptogenesis (T_R and no CPV parameters in the Lagrangian)
- No dark matter candidate
- Lack of explanation of neutrino masses and oscillations

We look for a simple model that addresses the above issues

Setup of our model in 5D

- Gauged $U(1)_{B-L}$ and introduce B-L Higgs and right-handed neutrinos
- Introduce the fifth-dimension
- We have another way to control the Lagrangian, geometry
- Introduce a pair of mediator to generate leptonic CP violating phases

$$ds^{2} = (dx^{0})^{2} - \sum_{i=1}^{3} (dx^{i})^{2} - dy^{2}$$

Setup of our model in 5D

$$G_{SM}\otimes U(1)_{B-L}$$

$$G_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$$

The other SM fields $U(1)_{B-L}$ gauge field right-handed neutrinos D, D'mediators of **CPV**

With orbifolding S_1/Z_2

With a bulk mass term, zero-mode has an exponentially localized wavefunction in the y-direction

$$\mathcal{L}_{\mathrm{bulk}}\ni +m_b\overline{N}_1N_1-m_b'\overline{D'}D'$$

$$N_1\qquad f_R^0(y)\qquad (f_L^0(y)=0)$$

$$H,\phi\qquad \qquad S$$

$$|\mathsf{mass\ times\ y}|$$

$$\psi_R(x,y) = \frac{1}{\sqrt{L}} \sum_n f_R^n(y) \psi_R^n(x)$$

With a bulk mass term, zero-mode has an exponentially localized wavefunction in the y-direction

a bulk mass term, zero-mode has an exponentially localized wavelon in the y-direction
$$\mathcal{L}_{\text{bulk}}\ni +m_b\overline{N}_1N_1-m_b'\overline{D'}D'$$

$$N_1\qquad \qquad f_R^0(y)\qquad (f_L^0(y)=0)$$

$$H,\phi\qquad \qquad |\text{mass times y}|$$

Dangerous operators are suppressed exponentially: $\langle S \rangle$ and T_R can be larger

$$\frac{c_{i,a}S^{2} + c'_{i,a}S^{*2}}{M_{*}^{2}} \overline{Q_{L}} H d_{i,R} \qquad \frac{c_{b}S + c'_{b}S^{*}}{M_{*}} \overline{Q_{L}} H D'_{R} \qquad \frac{c_{c}S^{2} + c'_{c}S^{2}^{*}}{M_{*}^{2}} \overline{D_{L}} D'_{R}$$

With a bulk mass term, zero-mode has an exponentially localized wavefunction in the y-direction

the y-direction
$$\mathcal{L}_{\text{bulk}}\ni +m_b\overline{N}_1N_1-m_b'\overline{D'}D'$$

$$N_1 \qquad \qquad f_R^0(y) \qquad (f_L^0(y)=0)$$

$$H,\phi \qquad \qquad S$$

$$This is essential for \\ N_{R,1} \text{ being dark matter}$$

$$|\mathsf{mass times y}|$$

The coupling and mass for the zero mode is exponentially suppressed

$$y_{\nu,i1}\overline{L}_iHN_{R,1}, \ \frac{1}{2}M_{N,1}\overline{(N_{R,1})^c}N_{R,1} \implies \frac{y_{\nu,i1}}{L}e^{-m_bL}\overline{L}_i^0HN_{R,1}^0, \ \frac{1}{2}\frac{M_{N,1}}{L}e^{-2m_bL}\overline{(N_{R,1})^c}N_{R,1}^0$$

- (Exponential) localization allows us to suppress the dangerous operators
- Localization naturally makes the lightest right-handed neutrino a dark matter candidate (with extremely small mixing and mass)
- These features cannot be achieved by symmetries alone.

Sterile neutrino dark matter

• The right-handed neutrino with a mass of O(10-100) keV can be dark matter

(From now on, we focus on the zero-modes and suppress the index 0)

Sterile neutrino dark matter

• The right-handed neutrino with a mass of O(10-100) keV can be dark matter

$$\frac{y_{\nu,i1}}{L}e^{-m_bL}\overline{L}_iHN_{R,1}, \ \frac{1}{2}\frac{M_{N,1}}{L}e^{-2m_bL}\overline{(N_{R,1})^c}N_{R,1}$$

$$m_b L = 20 \implies \exp(-20) \approx 2.1 \times 10^{-9}$$

$$\frac{M_{N,1}}{L}e^{-2m_bL}\sim 10 {
m keV}$$
 is natural

- The Yukawa coupling and mass are highly suppressed
- This is important to avoid the gamma ray constraint

$$N_{R,1}
ightarrow \gamma + \nu_i$$
 (one-loop)

Production of the sterile neutrino dark matter

- Because of extremely small Yukawa coupling, the Yukawa interaction is essentially negligible for production
- The main production is through $U(1)_{B-L}$ gauge interaction
- No viable solution is found when the sterile neutrino DM is thermalized (it can not fit to the oscillation data)

Non-thermalized case

- Even in this case, $N_{R,1}$ is created from SM particles (SM particles are in the thermal bath)
- For the largest temperature, the production is most efficient

Leptogenesis

- The next to lightest right-handed neutrino is responsible for leptogenesis
- The heaviest one is important through loops as well

The relevant effective Lagrangian for zero-modes is

$$-\mathcal{L} \ni \overline{\eta_L}(C_2 N_{2,R} + C_3 N_{3,R} + \mu_{\eta} \eta_R') + h.c. + \sum_{i=2,3} \frac{1}{2} M_{N,i} \overline{(N_{i,R})^c} N_{i,R} + h.c.,$$

 C_2 and C_3 are complex parameter coming from

$$S \ni \int d^4x dy \mathcal{L}_2 \delta(y - L), \quad \mathcal{L}_2 \ni -(l_j S + l'_j S^*) \overline{\eta_L} N_{R,j} + h.c.$$

$arg U_{11}$ arg *U*₂₁ -2 0.6 0.7 0.8 0.03 0.04 real $|U_{21}|$ $|U_{11}|$ 0.02 $arg\,U_{12}$ 0.00 -0.020.3 0.4 0.5 0.7 0.8 0.9 $|U_{12}|$ $|U_{22}|$

$$M_{N,2}/\mu_{\eta} = 10^{-2} \text{ and } M_{N,3}/\mu_{\eta} = 10^{-1},$$

 $|C_2/\mu_{\eta}| = [0.8, 1.2], |C_3/\mu_{\eta}| = [0.8, 1.2],$

 $\arg(C_2) = [-\pi, \pi], \ \arg(C_3) = [-\pi, \pi].$

Dark matter and baryon asymmetry of the universe are explained for e.g.

$$M_{N,2} = 2 \times 10^{10} \,\text{GeV}$$
 $v_{B-L} = \mathcal{O}(10^{12}) \,\text{GeV}$

with the hierarchy
$$v_{B-L} > \langle S \rangle > T_R > M_{\rm N,2}$$

Conclusion

- 5D model can suppress the dangerous operators which are not forbidden solely from the symmetries
- It is easy to avoid the domain wall problem, and the cosmology will be more flexible
- The lightest right-handed neutrino is dark matter, the required small parameters are naturally explained in 5D
- The baryon asymmetry of the universe is explained by the other two righthanded neutrinos
- The gamma ray constraint is severe. In other words, the gamma ray originated from the sterile neutrino DM may be observed in future