

Dark matter from inflationary quantum fluctuations

Teruaki Suyama

Science Tokyo

M.Gorji, M.Sasaki, TS, arXiv: 2501.03444

Introduction

(Image credit: Shutterstock)

Nature and production of dark matter unknown

Most models assume DM particles are produced after inflation.

Could DM originate during inflation?

Scenario

Dark matter arises purely from quantum fluctuations

Bosonic field (scalar)

• $\langle X \rangle \ll \sqrt{\langle X^2 \rangle}$ (negligible zero mode)

•
$$\rho_{DM} = \left\langle \frac{1}{2} \dot{X}^2 + \frac{1}{2} (\nabla X)^2 + \frac{m^2}{2} X^2 \right\rangle$$

Action for X (spectator field) during inflation

$$S = \frac{1}{2} \int d^3x \, dt \, a^3 f^2 \left[\dot{X}^2 - \frac{c_s^2}{a^2} \left(\partial_i X \right)^2 - m^2 X^2 \right]$$
$$f(t) = 1 \text{ in RD}$$

Evolution of X during RD era (no metric perturbation)

Transfer function

$$T(k,\tau) = \frac{X_k(\tau)}{X_{k,i}}$$

$$T''(k,\tau) + 2\frac{a'}{a}T'(k,\tau) + (c_s^2k^2 + m^2a^2)T(k,\tau) = 0$$

Exact analytic solution

$$T_m(k,\tau) = e^{-\frac{im}{2H}} {}_1F_1\left(\frac{3}{4} + \frac{iH_k}{4m}; \frac{3}{2}; \frac{im}{H}\right)$$

This is not given in the literature

I initially believed the exact solution was already known, but I was mistaken.

Some limiting cases

$$T_m(k,\tau) \approx \frac{1}{x} \sin\left(x + \frac{\mu_k^2}{6}x^3\right)$$

$$T_m(k,\tau) \approx \sqrt{\pi}e^{-\frac{\pi}{8\mu_k}}\mu^{-3/4}\text{Re}\left[\frac{e^{\frac{i\mu}{2}-\frac{3i\pi}{8}}\mu^{\frac{i}{4\mu_k}}}{\Gamma(\frac{3}{4}+\frac{i}{4\mu_k})}\left(1-\frac{1}{4\mu\mu_k}+\frac{i}{16\mu\mu_k^2}-\frac{3i}{16\mu}\right)\right]$$

Energy fraction

1. Relativistic regime $(\frac{k}{a} \gg m)$

$$\Omega_X(k,\tau) = \frac{\mathcal{P}_{X,i}(k)}{6M_{\rm Pl}^2} \begin{cases} x^2 \left(1 + \mu_k^2 \, x^2\right) & \propto a^2 & \text{For super-Hubble} \\ 1 - \frac{\sin(2x)}{x} \left(1 + \frac{1}{3} \mu_k^2 \, x^2\right) + \frac{1}{6} \mu_k^2 \, x^2 \cos(2x) & \propto a^0 \end{cases}$$
 For sub-Hubble
$$x = \tau/\tau_{re}$$

2. Non-relativistic regime $(\frac{k}{a} \ll m)$

$$\Omega_X(k,\tau) = \mu^2 \left(1 + \frac{1}{\mu \mu_k}\right) \frac{\mathcal{P}_{X,i}(k)}{6M_{\rm Pl}^2} \qquad \propto a^4 \qquad \qquad \text{For } m \ll H$$

$$\Omega_X(k,\tau) \approx \frac{4\pi\mu^{1/2}e^{-\frac{\kappa}{4\mu_k}}}{\left|\Gamma\left(\frac{3}{4} + \frac{i}{4\mu_k}\right)\right|^2} \frac{\mathcal{P}_{X,i}(k)}{6M_{\rm Pl}^2} \propto a^{1} \qquad \text{For } m \gg H$$

The transfer function can reproduce all these behaviors.

Variance and skewness

$$\mathcal{P}_{X,i}(k) = \mathcal{A}\left(\frac{H_{\text{inf}}}{2\pi}\right)^2 \delta\left[\ln\left(k/k_p\right)\right];$$

Sharply peaked at comoving scale k_{p}

1.
$$\langle \delta_X^2 \rangle = \left\langle \left(\frac{\hat{X}^2 - \sigma_X^2}{\sigma_X^2} \right)^2 \right\rangle = 2$$

O(1) density contrast (= $\sqrt{2}$) from the beginning Large isocurvature perturbation

$$2. \quad \langle \delta_X^3 \rangle = 8$$

Highly non-Gaussian

Gravitational collapse

Because of $\delta = O(1)$, DM can form halos even at $z \sim 10^3$

$$\delta = O(1)$$

$$t_p \sim \frac{m}{k_p^2}$$

$$t_{ff} \sim \frac{1}{\sqrt{G\rho}}$$

Jeans length

$$\lambda_J \sim \sqrt{Hm}$$

$$M_h \sim \frac{4\pi}{3} \rho_m k_p^{-3} \sim 0.1 M_{\odot} \left(\frac{k_p}{10 \text{kpc}^{-1}}\right)^{-3}$$

Observational implications

Early and abundant formation of subsolar-mass halos

Signals in microlensing?

Formation of early bright objects? (JWST)

Isocurvature perturbations at small scales

Signals in 21cm observations?

Highly non-Gaussian DM perturbation

Deviation from the Press-Schechter prediction based on Gaussian statistics?

Summary

If dark matter arises purely from quantum fluctuations, DM shows distinct features on small scales.

Exact transfer function of a massive field in RD was obtained.