Realizations of minicharged particles: from neutrinos to dark matter

Vishnu Padmanabhan Kovilakam

Institute of Theoretical Physics, University of Münster

22nd Lomonosov Conference on Elementary Particle Physics

Moscow State University, August 26, 2025

Talk based on:

* "Neutrino masses and mixing from milli-charged dark matter"

[Michael Klasen, Sudip Jana, Vishnu P.K., Luca P Wiggering: arXiv:2406.18641 (*JCAP 02 (2025) 011*)]

* "How charged can neutrinos be?"

[Michael Klasen, Sudip Jana, Vishnu P.K.: arXiv:2504.20044]

Electric Charge (De)quantization

Is electric charge is quantized?

Many theoretical frameworks suggest charge quantization:

- ☐ Grand unified theories, Magnetic monopoles,....
- So far no evidence

Electric Charge (De)quantization

Is electric charge is quantized?

Many theoretical frameworks suggest charge quantization:

- □ Grand unified theories, Magnetic monopoles,....
- So far no evidence

Electric charge is not quantized in the standard model!

- Conditions imposed by gauge invariance and gauge anomaly cancellations can fix some of the hypercharge assignments, <u>but not all</u>
- May be a hint!

Minicharged Particles: Within and Beyond SM

Definition: particles of charge $|Q| \ll 1$

Within SM:

- Viable candidates: neutral gauge bosons, Higgs boson, and neutrinos
- Gauge invariance forbid minicharged gauge bosons and Higgs boson
- Neutrinos can be charged

Minicharged Particles: Within and Beyond SM

Definition: particles of charge $|Q| \ll 1$

Within SM:

- Viable candidates: neutral gauge bosons, Higgs boson, and neutrinos
- Gauge invariance forbid minicharged gauge bosons and Higgs boson
- Neutrinos can be charged

Beyond SM:

- Viable candidate for dark matter
- Stable: ensured by electromagnetic gauge symmetry

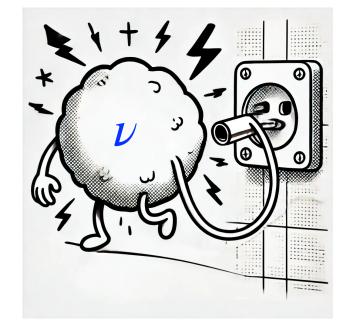
Charged Neutrinos

Models of charged neutrinos would inherently be a realization of Dirac neutrinos

- "Diracness" is protected by electromagnetic gauge symmetry
- Unlike various other realizations of Dirac neutrinos, no additional symmetries required

Non-standard interactions for neutrinos:

- Coupling with photons
- Could be probed in various experiments


Gauge invariance implies non-standard charges for charged leptons and/or quarks:

- Charged neutrons and charged matter!
- Stringent constraints from neutrality tests

'Charging' Neutrinos

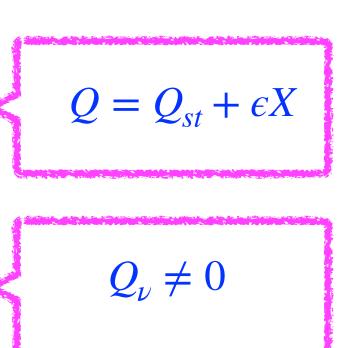
Electric charge is dequantized in a theory if it holds a guagable global symmetry, which is not the same as the SM hypercharge symmetry

```
[R. Foot, G. C. Joshi, H. Lew, R. R. Volkas, 1990],[R. Foot, 1991],[K. S. Babu, R. R. Volkas, 1992],[R. Foot, H. Lew, R. R. Volkas, 1993]
```


Setup: Models that possess a gaugable global symmetry $U(1)_X$ under which neutrinos transform non trivially (with X_{ν} quantum number)

Procedure: Instead of gauging the SM hypercharge generator Y, gauge a linear combination of Y and X. Then spontaneous symmetry breaking of modified electroweak gauge $SU(2)_L \times U(1)_{Y+\epsilon X}$ yields an unbroken electromagnetic symmetry $U(1)_Q$ with neutrinos of charge ϵX_{ν}

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times \{U(1)_X\}$$


$$SU(3)_C \times SU(2)_L \times U(1)_{Y+\epsilon X}$$

$$SU(3)_C \times U(1)_Q \Rightarrow Q = Q_{st} + \epsilon X$$

Models of Minicharged Neutrinos

Requirements on $U(1)_X$

- 1. $U(1)_X$ symmetry has to comply with all the gauge anomaly conditions
- 2. $U(1)_X$ symmetry is neither explicitly nor spontaneously broken
- 3. Under $U(1)_X$ symmetry, the SM leptons should transforms non-trivially

Models of Minicharged Neutrinos

Requirements on $U(1)_X$

- 1. $U(1)_X$ symmetry has to comply with all the gauge anomaly conditions
- 2. $U(1)_X$ symmetry is neither explicitly nor spontaneously broken
- 3. Under $U(1)_X$ symmetry, the SM leptons should transforms non-trivially

$$Q = Q_{st} + \epsilon X$$

$$Q_{\nu} \neq 0$$

Based on the $U(1)_X$ symmetry, models of charged neutrinos can be classified into two categories:

- 1. Charged neutrinos from flavor-dependent $U(1)_X$ scenarios
- 2. Charged neutrinos from flavor-universal $U(1)_X$ scenarios

Different flavors of the SM have different charges under the $U(1)_X$ symmetry

Symmetries include
$$U(1)_{L_i-L_j}$$
, $U(1)_{B_i-L_j}$

Charged neutrinos from $U(1)_{L_i-L_j}$: $\begin{cases} \text{Anomaly free within SM} & \text{Condition } 1\checkmark \\ \text{Symmetry is unbroken} & \text{Condition } 2\checkmark \\ \text{SM leptons are charged under } U(1)_{L_i-L_j} & \text{Condition } 3\checkmark \end{cases}$

$$SU(3)_C \times SU(2)_L \times U(1)_{Y+e(L_i-L_j)} \Rightarrow Q = Q_{st} + \epsilon(L_i - L_j) \Rightarrow U(1)_{L_\mu - L_\tau} \begin{cases} Q_{\nu_\mu} = \epsilon, & Q_{\nu_\tau} = -\epsilon \\ Q_\mu = -1 + \epsilon, & Q_\tau = -1 - \epsilon \end{cases}$$

Different flavors of the SM have different charges under the $U(1)_X$ symmetry

Symmetries include
$$U(1)_{L_i-L_j}$$
, $U(1)_{B_i-L_j}$

Charged neutrinos from
$$U(1)_{L_i-L_j}$$
:
$$\begin{cases} \text{Anomaly free within SM} & \text{Condition } 1\checkmark \\ \text{Symmetry is unbroken} & \text{Condition } 2\checkmark \\ \text{SM leptons are charged under } U(1)_{L_i-L_j} & \text{Condition } 3\checkmark \end{cases}$$
$$SU(3)_C \times SU(2)_L \times U(1)_{Y+\epsilon(L_i-L_j)} \Rightarrow Q = Q_{st} + \epsilon(L_i - L_j) \Rightarrow U(1)_{L_\mu-L_\tau} \begin{cases} Q_{\nu_\mu} = \epsilon, & Q_{\nu_\tau} = -\epsilon \\ Q_\mu = -1 + \epsilon, & Q_\tau = -1 - \epsilon \end{cases}$$

Charged neutrinos from $U(1)_{B_i-L_j}$: Condition 1 Requires one R

SM leptons are charged under $U(1)_{B_i-L_j}$ Condition 3 Condition 3

Requires one RH-neutrino ν_R

Majorana mass terms are not allowed

$$SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y+\epsilon(B_{i}-L_{j})} \Rightarrow Q = Q_{st} + \epsilon(B_{i} - L_{j}) \Rightarrow U(1)_{B_{3}-L_{3}} \begin{cases} Q_{\nu_{\tau}} = -\epsilon, & Q_{\tau} = -1 - \epsilon \\ Q_{t} = \frac{2}{3} + \frac{\epsilon}{3}, & Q_{b} = -\frac{1}{3} + \frac{\epsilon}{3} \end{cases}$$

Despite the success in accommodating the charged neutrinos, these scenarios are not compatible with various experimental data

Charged neutrinos from $U(1)_{L_i-L_j}$: $\begin{cases}
\text{Neutrino mixings are forbidden} \\
\text{Two neutrinos are massless}
\end{cases} \longrightarrow \text{Neutrino oscillation data} \times$

Despite the success in accommodating the charged neutrinos, these scenarios are not compatible with various experimental data

Charged neutrinos from $U(1)_{L_i-L_j}$: $\begin{cases} \text{Neutrino mixings are forbidden} \\ \text{Two neutrinos are massless} \end{cases} \longrightarrow \text{Neutrino oscillation data} \times$

Charged neutrinos from $U(1)_{B_i-L_j}$: $\begin{cases} \text{Mixing between } \nu_j \& \{\nu_{i\neq j}\} \text{ are forbidden} \\ \text{Mixing between } q_i \& \{q_{j\neq i}\} \text{ are forbidden} \end{cases} \Longrightarrow \begin{cases} \text{Neutrino oscillation data} \times \\ \text{Observed quark mixings} \times \end{cases}$

Similar conclusion holds in general for other flavor dependent $U(1)_X$ scenarios

Charged neutrinos: flavor universal $U(1)_X$

SM flavors have same charge under the $U(1)_X$ symmetry

Symmetries include $U(1)_{B-L}$, $U(1)_{L}$

Charged neutrinos from
$$U(1)_{B-L}$$
: Condition 1 Requires three E Majorana mass SM leptons are charged under $U(1)_{B-L}$ Condition 3 Con

Requires three RH-neutrino ν_R

Majorana mass terms are not allowed

$$SU(3)_C \times SU(2)_L \times U(1)_{Y+\epsilon(B-L)} \Rightarrow Q = Q_{st} + \epsilon(B-L) \Rightarrow \begin{cases} Q_{\nu_{\ell}} = -\epsilon, & Q_{\ell} = -1 - \epsilon \\ Q_u = \frac{2}{3} + \frac{\epsilon}{3}, & Q_d = -\frac{1}{3} + \frac{\epsilon}{3} \end{cases}$$

Charges of both SM leptons and quarks are altered from standard value \Rightarrow charged matter and neutron!

- $ilde{\square}$ Compatible with neutrino oscillation data: $\mathcal{L}_{Y} \supset Y_{\nu} \overline{\ell_{L}} H \nu_{R} + h \cdot c$.
- Compatible with observed quark mixings

Charged neutrinos: flavor universal $U(1)_X$

Charged neutrinos from $U(1)_L$: condition 3 is automatically satisfied

$$\nu_{R_i} \sim (1,0,1), \quad i = 1-3,$$
 Anomaly cancellation requires (condition 1):
$$\psi_L^{1,2} = \begin{pmatrix} \psi_1^{1,2} \\ \psi_2^{1,2} \end{pmatrix}_L \sim (2, \pm a, -\frac{3}{2}),$$

$$\psi_{1R}^{1,2} \sim (1, \pm a + \frac{1}{2}, -\frac{3}{2}), \quad \psi_{2R}^{1,2} \sim (1, \pm a - \frac{1}{2}, -\frac{3}{2}),$$

Majorana mass terms for neutrinos are not allowed: condition 2

$$SU(3)_C \times SU(2)_L \times U(1)_{Y+\epsilon(L)} \Rightarrow Q = Q_{st} + \epsilon(L) \Rightarrow Q_{\nu_{\ell}} = \epsilon, \quad Q_{\ell} = -1 + \epsilon$$

Only charges of SM leptons are altered from standard value: no constraint from neutrality test of neutrons

- $\ \ \, \square$ Compatible with neutrino oscillation data: $\mathscr{L}_Y \supset Y_{\nu} \overline{\ell_L} \widetilde{H} \nu_R + h \cdot c$.
- Compatible with observed quark mixings

Current Status of Charged Neutrinos

Neutarlity tests: indirectly impose stringent constraints on neutrino electric charge

$$\begin{cases} \text{Neutron} \Rightarrow U(1)_{B-L} \\ \text{Matter} \Rightarrow U(1)_{L_e-L_\mu}, U(1)_{L_e-L_\tau}, U(1)_L, U(1)_{B-L} \Longrightarrow |Q_\nu| < 10^{-21}e \end{cases}$$

Neutrino scattering experiments: directly probe electric charge of neutrinos

$$\begin{cases} \text{Reactor } \nu \text{ expts (GEMMA, TEXONO, CONUS, Dresden-II)} \Rightarrow |Q_{\nu}| \lesssim 10^{-12} e \\ \text{Accelerator } \nu \text{ expts (LSND,DONUT,COHERENT)} \Rightarrow |Q_{\nu}| \lesssim 10^{-10} e \\ \text{Solar } \nu \text{ expts (LZ,XENONnT,PandaX-4T)} \Rightarrow |Q_{\nu}| \lesssim 10^{-13} e \end{cases}$$

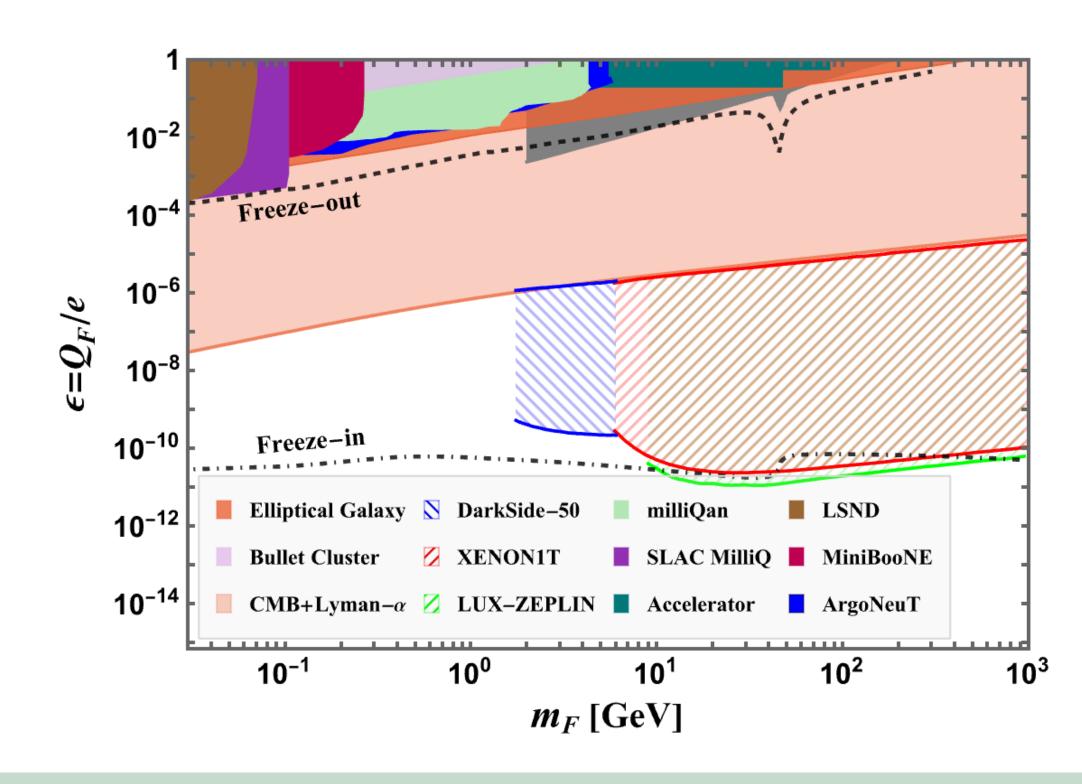
Astrophysics considerations:
$$\begin{cases} \text{SN1987A} \Rightarrow |Q_{\nu}| \lesssim \left(10^{-17}, 10^{-15}\right) e \\ \text{Solar cooling} \Rightarrow |Q_{\nu}| \lesssim 10^{-14} e \\ \text{TRGB} \Rightarrow |Q_{\nu}| \lesssim 10^{-15} e \\ \text{Magnetars} \Rightarrow |Q_{\nu}| \lesssim \left(10^{-12}, 10^{-11}\right) e \\ \text{Pulsars} \Rightarrow |Q_{\nu}| \lesssim 10^{-19} e \end{cases}$$
 See refrs within [C. Giunti, K. Kouzakov, Y.-F. Li, A. Studenikin, 2024], [M. Klasen, S. Jana, VPK, 2025]

		Charge of neutrino in $[e]$					
	Experiment/Method	$\mathbf{U}(1)_{\mathbf{L_e}-\mathbf{L}_{\mu}}$	$\mathbf{U}(1)_{\mathbf{L_e}-\mathbf{L}_ au}$	$\mathbf{U}(1)_{\mathbf{L}_{\mu}-\mathbf{L}_{ au}}$	$\mathbf{U}(1)_{\mathbf{B}-\mathbf{L}}$	$\mathbf{U}(1)_{\mathbf{L}}$	
Neutrality test	Neutron				$= (0.4 \pm 1.1) \times 10^{-21}$	_	
	Matter	$= (-0.2 \pm 2.3) \times 10^{-21}$	$= (-0.2 \pm 2.3) \times 10^{-21}$	_	$= (0.2 \pm 2.1) \times 10^{-21}$	$= (-0.2 \pm 2.3) \times 10^{-21}$	
Reactor ν experiment	TEXONO (2002)	$< 3.7 \times 10^{-12}$	$< 3.7 \times 10^{-12}$		$< 3.7 \times 10^{-12}$	$< 3.7 \times 10^{-12}$	
	GEMMA	$< 1.5 \times 10^{-12}$	$< 1.5 \times 10^{-12}$		$< 1.5 \times 10^{-12}$	$< 1.5 \times 10^{-12}$	
	TEXONO (2014)	$< 2.1 \times 10^{-12}$	$< 2.1 \times 10^{-12}$		$< 2.1 \times 10^{-12}$	$< 2.1 \times 10^{-12}$	
	CONUS	$< 3.3 \times 10^{-12}$	$< 3.3 \times 10^{-12}$		$< 3.3 \times 10^{-12}$	$< 3.3 \times 10^{-12}$	
	Dresden-II	$\in (-9.3, 9.5) \times 10^{-12}$	$\in (-9.3, 9.5) \times 10^{-12}$		$\in (-9.3, 9.5) \times 10^{-12}$	$\in (-9.3, 9.5) \times 10^{-12}$	
	CONUS+	$\in (-1.8, 1.9) \times 10^{-12}$	$\in (-1.8, 1.9) \times 10^{-12}$		$\in (-1.8, 1.9) \times 10^{-12}$	$\in (-1.8, 1.9) \times 10^{-12}$	
Accelerator ν experiment	LSND	$< 3 \times 10^{-9}$		$< 3 \times 10^{-9}$	$< 3 \times 10^{-9}$	$< 3 \times 10^{-9}$	
	DONUT		$< 4 \times 10^{-6}$	$< 4 \times 10^{-6}$	$< 4 \times 10^{-6}$	$<4\times10^{-6}$	
	COHERENT	$\in (-1.9, 1.9) \times 10^{-10}$	$\in (-5.0, 5.0) \times 10^{-10}$	$\in (-1.9, 1.9) \times 10^{-10}$	$\in (-1.9, 1.9) \times 10^{-10}$	$\in (-1.9, 1.9) \times 10^{-10}$	
43	XMAS-I	$< 7.3 \times 10^{-12}$	$< 7.3 \times 10^{-12}$	$< 1.1 \times 10^{-11}$	$< 5.4 \times 10^{-12}$	$< 5.4 \times 10^{-12}$	
Solar ν experiment	LUX-ZEPLIN	$\in (-2.1, 2.0) \times 10^{-13}$	$\in (-2.1, 2.0) \times 10^{-13}$	$\in (-2.8, 2.8) \times 10^{-13}$	$\in (-2.1, 2.0) \times 10^{-13}$	$\in (-2.1, 2.0) \times 10^{-13}$	
	XENONnT	$\in (-6.2, 6.1) \times 10^{-13}$	$\in (-5.4, 5.2) \times 10^{-13}$	$\in (-5.4, 5.2) \times 10^{-13}$	$\in (-5.4, 5.2) \times 10^{-13}$	$\in (-5.4, 5.2) \times 10^{-13}$	
	PandaX-4T	$\in (-1.3, 1.6) \times 10^{-12}$	$\in (-1.3, 1.6) \times 10^{-12}$	$\in (-2.2, 2.2) \times 10^{-12}$	$\in (-1.3, 1.6) \times 10^{-12}$	$\in (-1.3, 1.6) \times 10^{-12}$	
Beam	BEBC		$< 4 \times 10^{-4}$	$< 4 \times 10^{-4}$	$< 4 \times 10^{-4}$	$< 4 \times 10^{-4}$	
$(g-2)_{\ell}$	Muon $(g-2)$	$< 10^{-7}$		$< 10^{-7}$	$< 10^{-7}$	$< 10^{-7}$	
	Electron $(g-2)$	$< 10^{-11}$	$< 10^{-11}$	_	$< 10^{-11}$	$< 10^{-11}$	
Astrophysics	SN1987A	$\lesssim 10^{-17} - 10^{-15}$	$\lesssim 10^{-17} - 10^{-15}$		$\lesssim 10^{-17} - 10^{-15}$	$\lesssim 10^{-17} - 10^{-15}$	
	Solar cooling	$\lesssim 4 \times 10^{-14}$	$\lesssim 4 \times 10^{-14}$	$\lesssim 4 \times 10^{-14}$	$\lesssim 3 \times 10^{-14}$	$\lesssim 3 \times 10^{-14}$	
	TRGB	$< 6.3 \times 10^{-15}$	$< 6.3 \times 10^{-15}$	$< 6.3 \times 10^{-15}$	$< 6.3 \times 10^{-15}$	$< 6.3 \times 10^{-15}$	
	Magnetars	$< 10^{-12} - 10^{-11}$	$< 10^{-12} - 10^{-11}$	$< 10^{-12} - 10^{-11}$	$< 10^{-12} - 10^{-11}$	$< 10^{-12} - 10^{-11}$	
	Pulsars	$< 10^{-19}$	$< 10^{-19}$	$< 10^{-19}$	$< 10^{-19}$	$< 10^{-19}$	

Minicharged Dark Mater

Minicharged under $U(1)_Y$ symmetry: $\mathcal{L}_{\text{mDM}} = i\bar{\psi} \left(\gamma^{\mu} \partial_{\mu} - i\epsilon e \gamma^{\mu} B_{\mu} + m_{\text{F}} \right) \psi$

Viable candidate for dark matter


- Dark matter stability is ensured by electromagnetic gauge symmetry
- Stability is protected upto all orders in EFT expansion

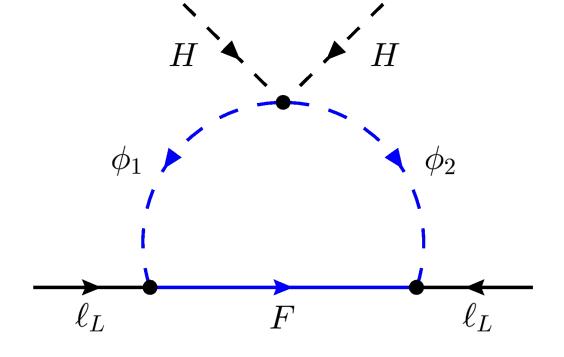
Tree-level coupling with photons:

Could be probed/constrained in/by various expts.

Relic abundance:

- □ Freeze-out: alaready excluded by CMB constraints
- Typically requires additional portals
- □ Freeze-in could work

Neutrino masses and mixings


NuFIT 6.0 (2024)

	Normal Orde	ring $(\Delta \chi^2 = 0.6)$	Inverted Ordering (best fit)		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\sin^2 heta_{12}$	$0.307^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.345$	$0.308^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.345$	
$ heta_{12}/^\circ$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	
$\sin^2 heta_{23}$	$0.561^{+0.012}_{-0.015}$	$0.430 \rightarrow 0.596$	$0.562^{+0.012}_{-0.015}$	$0.437 \rightarrow 0.597$	
$ heta_{23}/^\circ$	$48.5^{+0.7}_{-0.9}$	$41.0 \rightarrow 50.5$	$48.6^{+0.7}_{-0.9}$	$41.4 \rightarrow 50.6$	
$\sin^2 heta_{13}$	$0.02195^{+0.00054}_{-0.00058}$	$0.02023 \rightarrow 0.02376$	$0.02224^{+0.00056}_{-0.00057}$	$0.02053 \rightarrow 0.02397$	
$ heta_{13}/^\circ$	$8.52^{+0.11}_{-0.11}$	$8.18 \rightarrow 8.87$	$8.58^{+0.11}_{-0.11}$	$8.24 \rightarrow 8.91$	
$\delta_{ m CP}/^\circ$	177^{+19}_{-20}	$96 \rightarrow 422$	285^{+25}_{-28}	$201 \rightarrow 348$	
$rac{\Delta m^2_{21}}{10^{-5}~{ m eV}^2}$	$7.49^{+0.19}_{-0.19}$	6.92 o 8.05	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$	
$rac{\Delta m_{3\ell}^2}{10^{-3} \; { m eV}^2}$	$+2.534_{-0.023}^{+0.025}$	$+2.463 \rightarrow +2.606$	$-2.510^{+0.024}_{-0.025}$	$-2.584 \to -2.438$	

Minicharged Dark Matter assisted Neutrino Mass

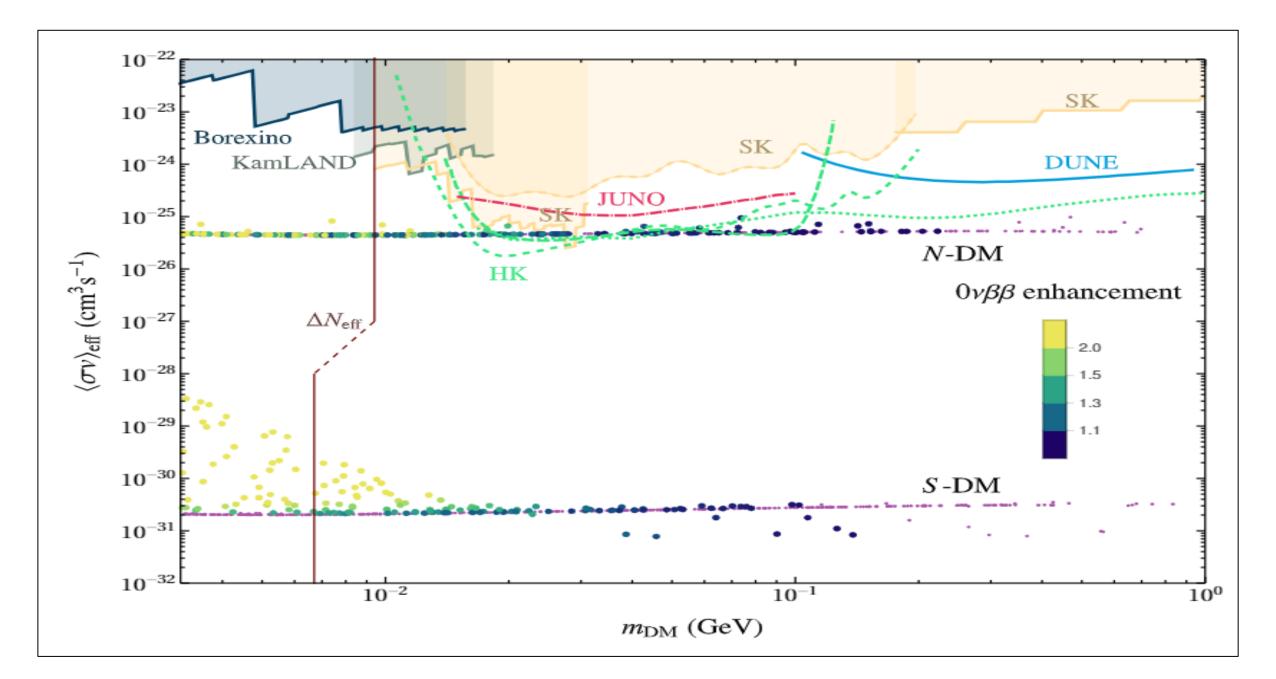
Unlike the conventional scotogenic models, this scheme doesn't requires any BSM symmetry to ensure dark matter stability

Neutrino mass generated at one-loop level

$$F \sim (1,1,\epsilon)$$

$$\phi_1 = \begin{pmatrix} \phi_1^{1+\epsilon} \\ \phi_1^{\epsilon} \end{pmatrix} \sim (1,2,\frac{1}{2}+\epsilon)$$

$$\phi_2 = \begin{pmatrix} \phi_2^{1-\epsilon} \\ \phi_2^{-\epsilon} \end{pmatrix} \sim (1,2,\frac{1}{2}-\epsilon)$$


The lightest minicharged particle is stable: can be a viable candidate for dark matter

Light thermal dark matter

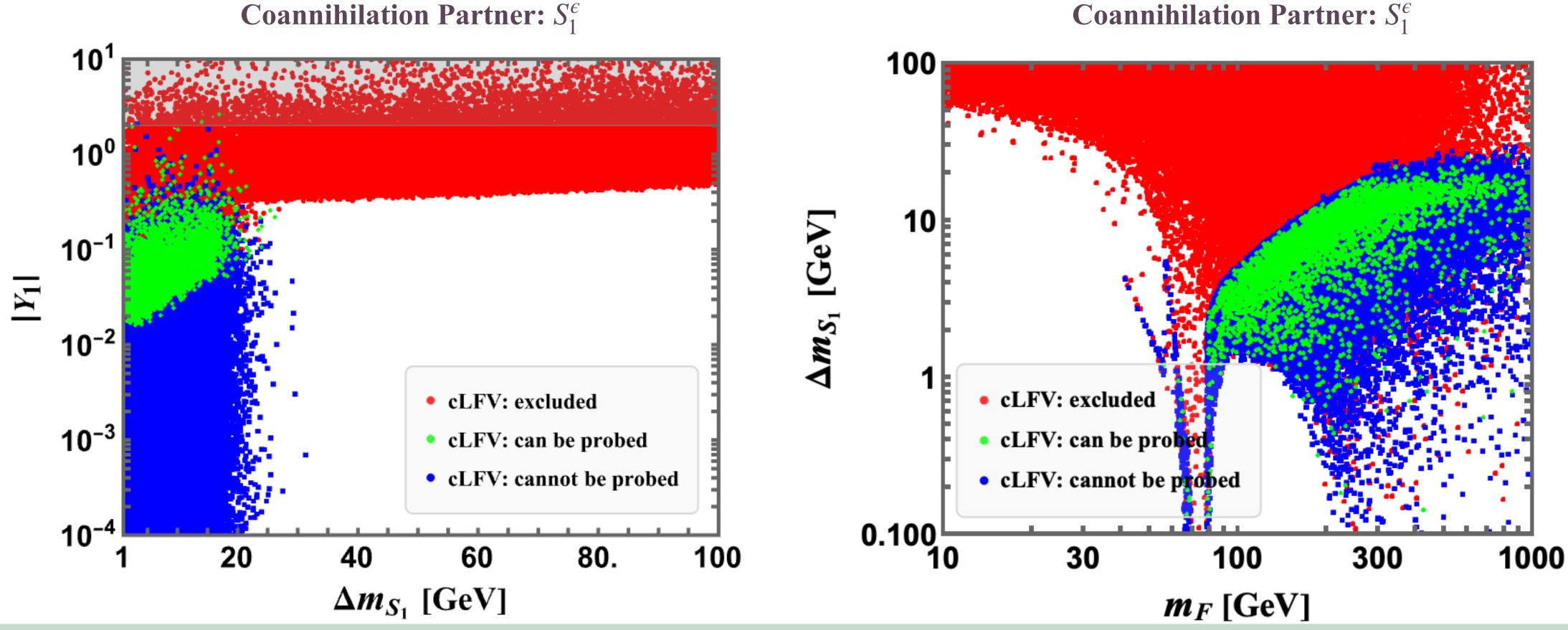
■ Requires a light mediator state for generating sufficently large contribution to annihilation cross section

$$\langle \sigma v \rangle \simeq \frac{m_{\rm DM}^2 g^4}{M^4}, m_{\rm DM} = 100 \,\text{MeV} \begin{cases} 100 \,\text{GeV mediator g} = 1\\ 100 \,\text{MeV mediator g} = 10^{-3} \end{cases}$$

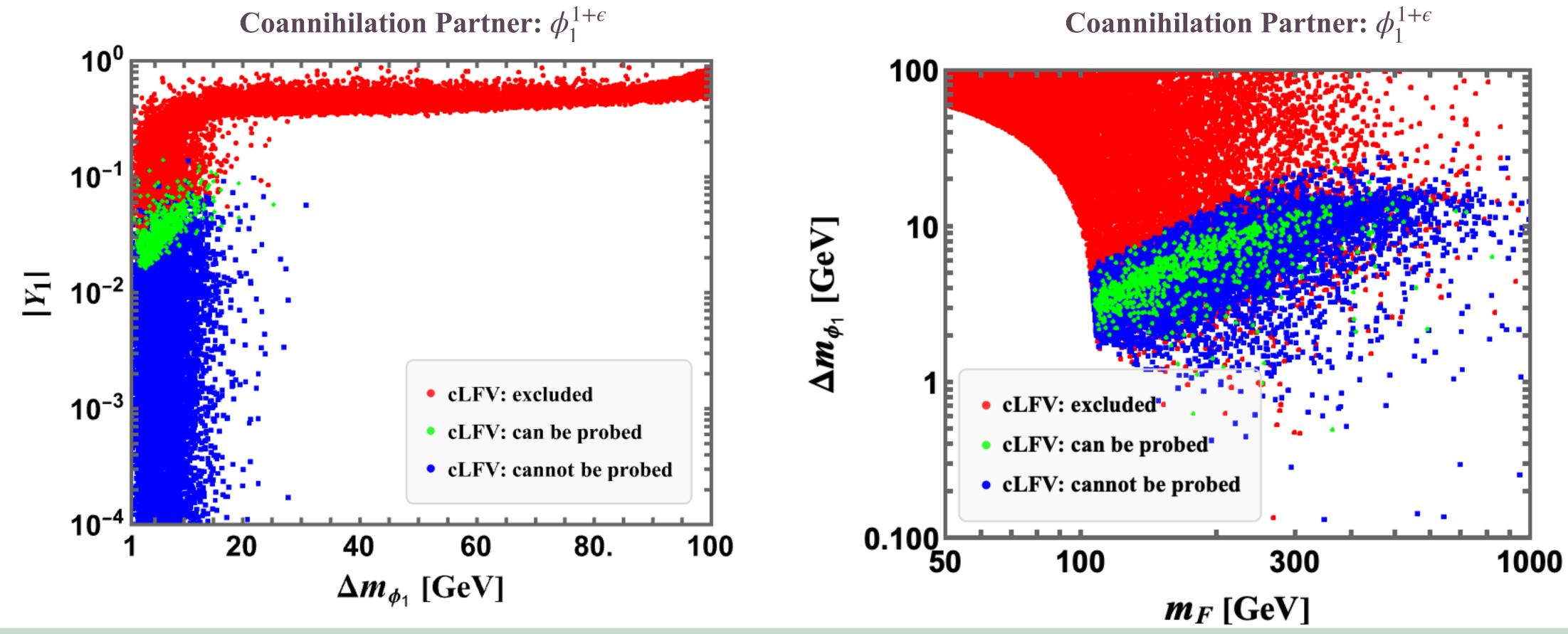
■ Scalars $\{\phi_1^{\epsilon}, \phi_2^{\epsilon}\}$ can be a viable light mediator (only one can be light!): neutrinophilic dark matter

J. Herms, S. Jana, VPK, and S. Saad (2023)

Can be probed in various next generation neutrino telescopes


Relic abundance: NH and IH

- For larger DM masses, sizeable values of Yukawa couplings are required to be consistent with relic density constraint
- Large values of Yukawa couplings are excluded by cLFV constraints: $m_{\rm DM} > 0.8~{\rm GeV}$ (NH) and $m_{\rm DM} > 0.5~{\rm GeV}$ (IH)


Heavy thermal dark matter

- For larger DM masses, DM annihilation into SM leptons via the *t* channel processes is excluded through the cLFV constraints
- However, the coannihilations with the new scalars are less severely constrained by these constraints

Heavy thermal dark matter

- For larger DM masses, DM annihilation into SM leptons via the *t* channel processes is excluded through the cLFV constraints
- However, the coannihilations with the new scalars are less severely constrained by these constraints

Summary

Theories of electric charge dequantization provide interesting avenues for BSM physics

Realization of minicharged particles:

Within SM: neutrinos

Beyond SM: viable candidate for dark matter

Minicharged neutrinos

- Presented various realization within the SM framework
- ☑ Demonstrated models of flavor dependent neutrino charges are incompatible with neutrino oscillation data
- ☑ Proposed a new UV complete model based on lepton number symmetry
- ☑ Presented currrent status for various models of charged neutrinos

Minicharged dark matter

- Presented a realization of minicharged dark matter assisted neutrino mass generation
- ☑ Unlike the conventional scotogenic scheme, this setup doesn't require any BSM symmetry for DM stability
- ☑ Could accommodate both light and heavy DM scenarios

