

Kinetic growth of axion stars

TWENTY-SECOND LOMONOSOV

CONFERENCE August, 21-27, 2025
ON ELEMENTARY PARTICLE PHYSICS
MOSCOW STATE LINIVERSITY

A. Dmitriev, DL, A. Panin, I. Tkachev, arXiv:2305.01005

arXiv:2509.XXXXX

QCD axion dark matter

$$m_a \sim 10^{-5} \div 10^{-3}$$
 эВ

Klaer, Moore '17 Gorghetto et al '21

QCD axions are bosons ϕ

Solve strong CP problem

Peccei, Quinn '77

Tiny interactions:

$$\lambda_{\phi^4} \sim 10^{-50}$$
, $\lambda_{\phi e^+ e^-} \lesssim 10^{-15}$

- ⇒ only gravity!
- Form cold dark matter

Preskill et al '83; Abbott, Sikivie '83

- \rightarrow slow: $v_{\phi} \ll 1$
- \rightarrow overoccupied: $f_{\mathbf{p}}(\mathbf{x}) \gg 1$
- = wave-like $\phi(t, x)$

Axion miniclusters

Kolb, Tkachev '93 Vaquero, Redondo, Stadler '19

Asteroid masses:

$$M_{tot} \sim 10^{-17} - 10^{-12} M_{\odot}$$

- Gravitationally bound now:
 - $R_{mc} \sim \text{a.e.}$
- Include $\sim 70\%$ of DM

Bose-Einstein condensation by gravity

DL, Panin, Tkachev '18

- Gravitational scattering: $\sigma_{gr} = \begin{vmatrix} \phi & \phi & \phi \\ \phi & \phi & \phi \end{vmatrix}^2 \propto \frac{(m_{\phi}G)^2}{v_{\phi}^4}$
- \Rightarrow Bose-Einstein condensation: $t_{gr} \sim (\sigma_{gr} v_{\phi} n_{\phi} f_{p})^{-1} \ll 10^{10} \text{ yr}$
- ullet Axion star = condensate at the lowest level of U_{bs}

■ Universe is <u>full</u> of QCD axion stars!

But how do they grow?

cf. Eggemeier et al '19, Chan et al '22 and see Dmitriev, DL, Tkachev '23

$$\boxed{\partial_t f_{\boldsymbol{p}} + \boldsymbol{v} \nabla_{\boldsymbol{x}} f_{\boldsymbol{p}} - \nabla_{\boldsymbol{x}} \bar{\boldsymbol{U}} \nabla_{\boldsymbol{p}} f_{\boldsymbol{p}} = \left(\operatorname{St} f_{\boldsymbol{p}} \propto G^2 f_{\boldsymbol{p}}^3 \right)}$$

axion star 1

particles near it:

Approximations

- homogeneous gas: $\nabla_{x} f_{p} = 0$
- ullet no mean potential: $ar{U}=0$
- collisions: Landau integral

But take into account

energy/particle exchange with Bose star

$$\partial_t F = \underbrace{G^2 \int d\sigma_{gr} F^3}_{\text{grav. scattering}}$$

Condensing BC: $J_N\Big|_{\omega=0} \neq 0$

Key observation: scale symmetry!

$$\partial_t F = G^2 \int d\sigma_{gr} F^3$$

Symmetry:

$$t \to ct$$
 $\omega \to c^{1-2/D} \omega$
 $F \to c^{1/D} F$

$$D$$
 — arbitrary

Invariants:

$$\omega_s \equiv \beta(t) \, \omega$$
 $F_s \equiv F/\alpha(t)$

$$\alpha \propto t^{-1/D}$$

$$\beta \propto t^{2/D-1}$$

Self-similar Ansatz

= most general & scale-symmetric

$$F = \alpha(t)F_s(\beta(t)\omega)$$

$$\left. \begin{array}{l} E \propto t^{2-5/D} \\ N \propto t^{1-3/D} \end{array} \right\} \Rightarrow E^3/N^5 \propto t$$

Coleman theorem: the Ansatz passes the equation!

$$(2/D - 1)\omega_s\partial_{\omega_s}F_s - F_s/D = G^2\int d\sigma_{gr} F_s^3$$
 | bound/ext conditions $\Leftrightarrow D$

Numerical evolution

$$\partial_t F = G^2 \int d\sigma_{gr} F^3$$

$F(t, \omega)$ is self-similar! $F = \alpha F_s(\beta \omega)$ $\alpha \propto \tau^{-1/D}, \ \beta \propto \tau^{2/D-1}$ $(\tau \equiv t/t_{gr})$ D = 2.5

boundary conditions
$$\Rightarrow E = \text{const} \Rightarrow D = 2.5$$

Self-similar solutions are attractors!

Self-similar profiles

Adiabatic self-similarity = approximate self-similarity

$$\partial_t F = G^2 \int d\sigma_{gr} F^3 + J_{\rm ext}(t, \omega) \leftarrow$$
 symmetry breaking!

Approx. self-similar! $F = \alpha F_s(\beta \omega)$ $\alpha \propto t^{-1/D}, \ \beta \propto t^{2/D-1}$ But D = D(t)

$$(2/D-1)\omega_s\partial_{\omega_s}F_s - F_s/D = G^2\int d\sigma_{gr}F_s^3 + J_{\text{ext},s}$$

All self-similar solutions are kinetic attractors!

- Adiabatic self-similarity:
 - D = D(t), but slowly $\Rightarrow E^3/M^5 \approx (t t_i)/t_*$ self-similar eq. of state

- Heuristic constants: t_i , $t_* = const$
- Energy & mass conservation:

$$E + E_{bs} = \text{const},$$
 $M + M_{bs} = \text{const}$
gas star gas star

• Axion star: $E_{bs} = -\gamma M_{bs}^3$ known constant

$$\frac{(1+x^3/\epsilon^2)^3}{(1-x)^5} = \frac{t-t_i}{t_{gr}-t_i}$$

- $x(t) \equiv M_{bs}/M_{tot}$
- $\epsilon^2 = E_{tot}/\gamma M_{tot}^3$
- t_i find from the fit

Simple algebraic law!

Coincides with all known simulations!

cf. Levkov et al '18, Eggemeier et al '19, Chan et al '22, Schive et al '14, Dmitriev et al '23

What does it mean for cosmology?

QCD axion
$$m_a \sim 10^{-4} \, \mathrm{eV}$$

Relaxation time:

$$t_{gr} \sim 5 \cdot 10^8 \, \mathrm{yr}/\Phi^4 \gtrsim \mathsf{hr}$$

• Time to condense 10% of minicluster:

$$\frac{t_{10} \sim \frac{7 \cdot 10^{18} \, \text{yr}}{\Phi^8} \cdot \underbrace{(10\%)^9}_{\text{x}} \underbrace{< 10^{10} \, \text{yr}}_{\text{if}} \underbrace{\Phi \gtrsim 1}$$

- ullet \Rightarrow $\bigg| \gtrsim 10 \ \%$ of dark matter = axion stars?
- Heavy axion stars: $M_{bs} \sim 10^{-17} 10^{-12} M_{\odot}$ $R_{bc} \sim 100 \, \mathrm{km}$
- Observational signatures: Bose-novae, extra radio background, parametric radioexplosions, ...

We need distribution of miniclusters!

cf. Maseizik, Sigl '24; Gorghetto, Hardy, Villadoro, '24

Conclusions

Kinetic theory

- Gravitational kinetics is controlled by self-similar attractors!
 - = non-thermal fixed points of kinetic evolution

in short-range kinetics: Svistunov '91; Semikoz, Tkachev '95; Berges, Sexty '12

• Adiabatic self-similarity: D = D(t) problems with broken scale symmetry!

Applications in ordinary (short-range) kinetics? cf. Micha, Tkachev '03

Axion stars

- Adiabatic self-similarity \Rightarrow analytic growth law $M_{bs}(t)$ \Rightarrow distribution of axion stars in the Universe!
- But:
 - Generalization to non-uniform gas in minicluster?
 - Scattering integral for condensation onto Bose star?
 - ► Distribution of axion miniclusters?

Thank you for attention!