Effects of inhomogeneities on the propagation of gravitational waves from binaries of compact objects

Archan S. Majumdar

S. N. Bose National Centre for Basic Sciences Kolkata, India

A. Ali and ASM, JCAP **01**, 054 (2017)

S. S. Pandey, A. Sarkar, A. Ali and ASM, JCAP **06**, 021 (2022)

A. Halder, S. S. Pandey, ASM, JCAP 08, 064 (2023)

S. S. Pandey, A. Halder, ASM, Phys. Rev. D 110, 043531 (2024)

Outlook:

- Observations tell us that the present Universe is inhomogeneous up to scales (< 500 ħ⁻¹ Mpc) [Features: Spatial volume is dominated by voids; peculiar structures at very large scales] [Sloan Digital Sky Surveys; Giant arc ~ 1 Gpc]
- Cosmology is very well described by spatially homogeneous and isotropic FLRW model (modulo recent tensions: Hubble, S-8..?)
- ❖ Observational concordance comes with a price: more that 90% of the energy budget of the present universe comes in forms that have never been directly observed (DM & DE); DE not even theoretically understood
- Scope for alternative thinking without modifying GR or extending SM; application of GR needs to be more precisely specified on large scales
- Backreaction from inhomogeneities could modify the evolution of the Universe; Gravitational wave propagation
 compact object parameters in GW astronomy

Propagation of Gravitational Waves from binaries

- Several detection events of compact binary mergers since LIGO and VIRGO
- Observed GW parameters are crucial for inferring source parameters, viz., mass, merger rate
- ➤ Multi-messenger astronomy opening up new observational window to physics of BH formation & many aspects of early universe physics
- Present observation of GWs comes from sources that are well within (much smaller than) the scale of observed global homogeneity
- Backreaction induced changes in observed GW parameters corresponding modification in inferred source parameters

Problem of course-graining or averaging

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

$$G_{\mu\nu} = \langle T_{\mu\nu} \rangle$$

Einstein's equations: nonlinear

$$< G_{\mu\nu}(g_{\mu\nu}) > = < T_{\mu\nu} > \neq G_{\mu\nu}(< g_{\mu\nu} >)$$

Einstein tensor constructed from average metric tensor will not be same in general as the average of the Einstein tensor of the actual metrics

Different approaches of averaging

Macroscopic gravity: (Zalaletdinov, GRG '92;'93)

$$\langle g^{\mu\lambda} \rangle \langle R_{\lambda\nu} \rangle - \frac{1}{2} \delta_{\nu}^{\mu} \langle g^{\lambda\rho} \rangle \langle R_{\lambda\rho} \rangle + C_{\nu}^{\mu} = \kappa \langle T_{\nu}^{\mu} \rangle$$

(additional mathematical structure for covariant averaging scheme)

Perturbative schemes: (Clarkson et al, RPP '11; Kolb, CQG '11)

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}$$
 $\overline{G}_{\nu}^{\mu} + \delta G_{\nu}^{\mu} = \kappa \langle T_{\nu}^{\mu} \rangle$

Spatial averages: (Buchert, GRG '00; '01)***

Lightcone averages: (Gasperini et al., JCAP '09;'11)

Bottom-up approach [discrete cosmological models]: (Tavakol, PRD'12; JCAP'13)

Using the Einstein equations:

$$3\frac{\ddot{a}_{D}}{a_{D}} = -4\pi G \langle \rho \rangle_{D} + Q_{D} + \Lambda$$

$$3H_{D}^{2} = 8\pi G \langle \rho \rangle_{D} - \frac{1}{2} \langle R \rangle_{D} - \frac{1}{2} Q_{D} + \Lambda$$

$$0 = \partial_{t} \langle \rho \rangle_{D} + 3H_{D} \langle \rho \rangle_{D}$$

Q: Backreaction due to averaging

where the average of the scalar quantities on the domain D is

$$\left\langle f \right\rangle_{\mathrm{D}}(t) = \frac{\int_{\mathrm{D}} f(t, X^{1}, X^{2}, X^{3}) d\mu_{g}}{\int_{\mathrm{D}} d\mu_{g}}$$

Integrability condition:

$$\frac{1}{a_D^6} \partial_t \left(a_D^6 Q_D \right) + \frac{1}{a_D^2} \partial_t \left(a_D^2 \left\langle R_D \right\rangle \right) = 0$$

= local matter density

R = Ricci-scalar

$$H_{\rm D} = \frac{\dot{a}_{\rm D}}{a_{\rm D}}$$
 = domain dependent Hubble rate

The kinematical backreaction QD is defined as

$$Q_{D} = \frac{2}{3} \left(\left\langle \theta^{2} \right\rangle_{D} - \left\langle \theta \right\rangle_{D}^{2} \right) - 2\sigma_{D}^{2}$$

where θ is the local expansion rate,

 $\sigma^2 = 1/2\sigma_{ij}\sigma^{ij}$ is the squared rate of shear

Acceleration equation for the global domain D:

$$\frac{\ddot{a}_{\mathrm{D}}}{a_{\mathrm{D}}} = \sum_{\ell} \lambda_{\ell} \frac{\ddot{a}_{\ell}(t)}{a_{\ell}(t)} + \sum_{\ell \neq m} \lambda_{\ell} \lambda_{m} \left(H_{\ell} - H_{m} \right)^{2}$$

2-scale interaction-free model (Weigand & Buchert, PRD '10):

M – those parts that have initial overdensity ("Wall")

E – those parts that have initial underdensity ("Void")

$$D=M\cup E \qquad \qquad H_D=\lambda_M H_M + \lambda_E H_E$$
 Void fraction:
$$\lambda_E=\frac{|E|}{|D|} \qquad \text{Wall fraction:} \quad \lambda_M=\frac{|M|}{|D|}$$

$$\lambda_M+\lambda_E=1$$

Acceleration equation:

$$\frac{\ddot{a}_{\mathsf{D}}}{2} = \lambda_{\mathsf{M}} \frac{\ddot{a}_{\mathsf{M}}}{2} + \lambda_{\mathsf{E}} \frac{\ddot{a}_{\mathsf{E}}}{2} + 2\lambda_{\mathsf{M}} \lambda_{\mathsf{E}} (H_{\mathsf{M}} - H_{\mathsf{E}})^{2}$$

Future evolution assuming present acceleration

$$a_M \propto c_M t^{\beta}$$

$$a_E \propto c_E t^{\alpha}$$

 t/t_0

Present wall fraction, $\lambda_{M_0} = 0.09$ [Weigand & Buchert, PRD '10]

Future evolution of the global domain [A. Ali, ASM JCAP '17]

$$q = 0.6, \beta = 0.7$$

$$a_{M} = \frac{q}{2q - 1}(1 - \cos \theta)$$

$$t = \frac{q}{2q - 1}(\theta - \sin \theta)$$

$$H_{D} = \lambda_{M}H_{M} + \lambda_{E}H_{E}$$

As time evolves, H_E falls off more rapidly compared to H_M Even though the wall occupies a tiny fraction of the total volume, the decrease of λ_M is more than compensated by the comparative evolution of H_E and H_M

Decelerating future evolution!

Analogous scalar field cosmology [A. Ali, ASM, JCAP '17]

Effective perfect fluid E-M tensor in the Backreaction formalism:

$$\rho_{eff}^{D} = \left\langle \rho \right\rangle_{D} - \frac{1}{16\pi G} Q_{D} - \frac{1}{16\pi G} \left\langle R \right\rangle_{D}$$

$$P_{eff}^{D} = -\frac{1}{16\pi G} Q_{D} + \frac{1}{16\pi G} \left\langle R \right\rangle_{D}$$

Buchert equations recast in standard Friedman form:

$$3\frac{\dot{a}_{D}}{a_{D}} = -4\pi G \left(\rho_{eff}^{D} + 3P_{eff}^{D}\right) + \Lambda$$
$$3H_{D}^{2} = 8\pi G \rho_{eff}^{D} + \Lambda$$
$$\dot{\rho}_{eff}^{D} + 3H_{D} \left(\rho_{eff}^{D} + P_{eff}^{D}\right) = 0$$

corresponding to energy density and pressure of effective global scalar field at scales much larger than the scale of inhomogeneities

Scalar field dynamics

Observational Impact of Inhomogeneities:

Multi-messenger Astronomy

Backreaction model

(2-scale void-wall) [Pandey, Ali, Sarkar, ASM '22]

$$t = t_0 \left(\frac{\phi - \sin \phi}{\phi_0 - \sin \phi_0} \right),$$

$$a_o = \frac{fo^{1/3}}{2} (1 - \cos \phi),$$

$$a_u = \frac{fu^{1/3} (\phi_0 - \sin \phi_0)}{\pi t_0} t^{\beta}$$

$$a_{\mathcal{D}} = \left(\frac{a_u^3 + a_o^3}{a_{u,0}^3 + a_{o,0}^3}\right)^{1/3} \qquad H_{\mathcal{D}} = H_u \frac{a_u^3}{a_u^3 + a_o^3} + H_o \frac{a_o^3}{a_u^3 + a_o^3}$$

$$Q_{\mathcal{D}} = Q_o + Q_u + 6fo(1 - fo)(H_o - H_u)^2$$
$$Q_o = 0 \qquad Q_u = 0.$$

Light propagation in backreaction model

Angular diameter distance

$$D_A = \frac{c}{1+z_1} \int_0^{z_1} \frac{dz}{H(z)}$$

Covariant scheme:

[Rasanen '09]

$$1 + z = \frac{1}{a_{\mathcal{D}}},$$

$$H_{\mathcal{D}} \frac{d}{dz} \left((1+z)^2 H_{\mathcal{D}} \frac{dD_A}{dz} \right) = -\frac{4\pi G}{c^4} \langle \rho_{\mathcal{D}} \rangle D_A$$

Change in observed redshift during the time interval of observation: Red-shift drift

Angular diameter versus red-shift

Departure from ACDM in terms model parameters

Gravitational wave amplitude

Binaries in early inspiral stage (Keplerian approximation)

$$h_{\times} = \frac{G^{5/3}(1+z)^{5/3}}{D_L c^4} \frac{m_1 m_2}{(m_1 + m_2)^{1/3}} (-4\omega^{2/3}) \sin 2\omega t$$

$$D_L = (1+z)D$$

Red-shift dependent part of GW amplitude

$$(1+z)^{5/3}/D_L$$

Deviations from ACDM get amplified at higher z

Change in gravitational wave observables

* Amount of change depend upon effect of inhomogeneities in the path of propagation – model parameters fu, fo, and eta

Red-shift minima (model dependence)

 $(1+z)^{5/3}/D_L$ has a minimum at z_{\min}

S. S. Pandey, A. Sarkar, A. Ali, ASM, JCAP 06, 021 (2022)

$$(1+z_{\min}) \left[\frac{d}{dz} ln[D_L] \right]_{z=z_{\min}} = \frac{5}{3}$$

Independent of binary characteristics, cosmological model, GW detector [Rosado et al., PRL **116**, 101102 (2016)]

Minima Varies!

Analyzing the 21-cm signal brightness temperature in the Universe with inhomogeneities

Shashank Shekhar Pandey®,* Ashadul Halder®,† and A. S. Majumdar[‡]

Department of Astrophysics and High Energy Physics, S. N. Bose National Centre for Basic Sciences,

Block JD, Sector III, Salt Lake, Kolkata-700106, India

Received 10 November 2023; accepted 30 July 2024; published 28 August 2024)

Multidomain model [A. Halder, S. S. Pandey, ASM, JCAP 08, 064 (2023)]

$$a_{o_i}=rac{q_{o_i}}{2q_{o_i}-1}(1-\cos\phi)$$
 Underdense regions $t_i=rac{q_{o_i}}{2q_{o_i}-1}\left(\phi-\sin\phi
ight)$ $a_{u_i}=c_{u_i}t^{eta_i}$

Global acceleration:

$$\frac{\ddot{a}_{\mathcal{D}}}{a_{\mathcal{D}}} = \left(\sum_{i} -\lambda_{o_{i}} q_{o_{i}} H_{o_{i}}^{2}\right) + \left(\sum_{j} \lambda_{u_{j}} \frac{\beta(\beta-1)}{t^{2}}\right) + \left(\sum_{k} \sum_{l} \lambda_{k} \lambda_{l} \left(H_{l} - H_{k}\right)^{2}\right)$$

Gaussian profile for volume fractions

$$\lambda_{u_i,0} = \frac{N_u}{\sigma_u \sqrt{2\pi}} e^{-(\beta_i - \mu_u)^2 / 2\sigma_u^2} \qquad \lambda_{o_i,0} = \frac{N_o}{\sigma_o \sqrt{2\pi}} e^{-(q_{o_i} - \mu_o)^2 / 2\sigma_o^2}$$

Evolution in multidomain model (No Big-rip!)

Global acceleration

Onset of future decelerating phase $\,t_{ m dec}$

Observational constraints [multi-scale Gaussian model]

[A. Halder... ASM, JCAP '23]

(Bayesian analysis using Union 2.1 Supernova I a data)

Effect of inhomogeneities: gravitational wave propagation (Summary)

[A. Ali, ASM, JCAP 01, 054 (2017); S. S. Pandey, A. Sarkar, A. Ali, ASM, JCAP 06, 021 (2022); A. Halder, S. S. Pandey, ASM, JCAP 08, 064 (2023); S. S. P., A. H., ASM, PRD 110. 043531 (2024)]

- Effect of backreaction due to inhomogeneities on the future evolution of the accelerating universe (Spatial averaging in the **Buchert framework**)
- The global homogeneity scale (or cosmic event horizon) impacts the role of inhomogeneities on the evolution, causing the acceleration to slow down significantly with time.
- Backreaction could be responsible for a decelerated era in the future. (Avoidance of big rip!) Possible within a small region of parameter space
- Analogous scalar field cosmology: Form of potential fixed by backreaction model; Observational constraints from data analysis
- Dip in 21-cm signal (explanation for EDGES result !)
- Modification of binary GW parameters due to backreaction from inhomogeneities. Clear signature of red-shift drift. *Significance in Multimessenger Astronomy & EU Physics*
- Effect may be tested in more realistic models, e.g., models with no ansatz for subdomains, & other schemes of backreaction