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1. Introduction:

Why "Modified Gravity"?

Our reference theory, Einstein’s gravity (GR)

▶ generally suffers singularities, if the Null Energy Condition
(NEC) holds (Penrose, Hawking theorems),

▶ ΛCDM (Cosmological Constant Problem, Weinberg (1989)),

▶ challenges ahead?
(DESI BAO data, e.g. A.G. Adame et al., DESI 2024 VI. JCAP 02 (2025))

...



1. A paradigm: Horndeski theory
Scalar modification of GR that

▶ keeps second order equations (No Ghosts),

▶ does not satisfy the NEC in general,

Unique answer: Horndeski theory (1974)

Extensively used for
▶ early and late time cosmology
▶ compact objects and other modified gravity solutions

There are generalizations: Beyond Horndeski (Gleyzes-Langlois-Piazza-Vernizzi

theory) and DHOST (Ben Achour, Crisostomi, Koyama, Langlois, Noui Tasinato (2016) JHEP

12, 100 [arXiv:1608.08135])



1. What is Horndeski theory?

▶ Take a real scalar field π besides the metric field,

▶ On top of GR take 4 general Scalar Potentials Gi(π,X),
i = 2, 3, 4, 5, where X = ∇µπ∇µπ,

▶ Most general combinations of R and (∇2π)p with p ≤ 3 and Gi

coefficients, with second order equations of motion.

Lπ = L2 + L3 + L4 + L5,

L2 = G2(π,X),

L3 = G3(π,X)2π,

L4 = G4(π,X)R− 2G4X(π,X)
[
(2π)

2 − π;mnπ
;mn

]
,

L5 = G5(π,X)Gmnπ;mn +
G5X

3

[
(2π)

3 − 32ππ;mnπ
;mn + 2π;mnπ

;mlπ n
;l

]
,



1. Review: The Speed of Perturbations

▶ Take the Perturbed metric

ds2 = (ηµν + δgµν)dxµdxν

with FLRW background

ηµνdxµdxν = −dt2 + a2 δijdxidxj

and metric perturbation,

δg = a2
(
2Sidt dxi + (∂iFj + ∂jFi + 2hij)dxi dxj

)
,

▶ The Photon is the perturbation Ai(η, x⃗)

▶ Scalar sector remains untouched



1. Review: The Speed of Perturbations

▶ Quadratic action for Graviton,

SGraviton =
1

2

∫
dt d3x a3

(
Gτ ḣ

2
ij −

Fτ

a2
(∂khij)

2

)
, (2)

thus, the Speed of Gravitational Waves is,

c2g =
Fτ

Gτ
,

▶ Quadratic action for the Photon,

SPhoton =
1

4

∫
dt d3x a

(
GA Ȧ2

i −
FA

a2
(∂kAi)

2

)
, (3)

thus, the Speed of the Photon is,

c2 =
FA

GA
.
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2. (nearly) Luminal GWs: observation vs. theory

▶ The event GW170817 and the electromagnetic counterpart
GRB170817A set the speed of GWs (cg) very close to the speed
of light c ∣∣∣cg

c
− 1

∣∣∣ ≤ 5× 10−16 , (4)

in this talk, I assume exactly Luminal GWs, cg ≡ c

▶ Now, what’s with the theory? in Horndeski theory on a
cosmological FLRW background, the speed of GWs is

c2g =
2G4 − 2π̈XG5,X +XG5,π

2G4 − 4XG4,X − 2π̇XHG5,X −XG5,π
̸= 1 = c2 , (5)



2. Luminal GWs. Option (B)

(B) Historically standard approach: Constrain the Scalar
couplings by

assuming minimal Photon such that cg = c = 1.

▶ Consequence of (B): necessarily G4X = G5 ≡ 0

c2g =
2G4−2π̈XG5,X +XG5,π

2G4−4XG4,X − 2π̇XHG5,X −XG5,π
= 1 = c2 , (6)

▶ We are left with Brans-Dicke type theory G4 = G4(π).

▶ We lose the Fab-Four, in the context of Cosmological constant
problem (Charmousis et. al., 2011)



Is there another option?

Yes!



Luminal GWs. Option (A)

▶ (A) Supplement Horndeski theory with the Scalar—Photon
couplings that satisfy

cg(t)

c(t)
= 1 . (7)

Note that here we will not assume c(t) ≡ 1.

Basic idea is: Gravity couples universally to all matter.

What if

the scalar modification of gravity at cosmological scales also shares
this universal coupling property? In particular, DE Scalar — Photon



How to obtain
Dark Energy—Photon couplings
such that we see

cg(t)

c(t) = 1 ?
KK is a possibility



(A) Horndeski Theory + DE —Photon couplings

▶ Our proposal reads

L = Horndeski Theory + L4A + L5A (8)

where the Dark Energy—Photon couplings are

L4A = −1

4
G4 F

2 +G4,X Fµ
σFνσ π

;µπ;ν (9)

L5A = G5(π)

(
1

8
FµνFµ

ρ(−4π;νρ + gνρ2π) +
1

2
Fµν∇σF

νσ π;µ

)
where Fµν = ∂µAν − ∂νAµ.

S. Mironov, A. Shtennikova and M. V-V (2024), Phys.Lett.B 858, 139058 [arXiv:2405.02281]

S. Mironov, A. Shtennikova and M. V-V (2025), Phys. Rev. D 111, L101501 [arXiv:2412.13460]



Partial Conclusion:

▶ A different viewpoint: in this talk the speed tests suggest the way
Dark Energy couples to the Photon such that cg(t)/c(t) = 1,
which is what was actually measured in GW170817 and
GRB170817,

▶ We recover non-minimal couplings (Fab Four),

▶ We are brought to a U(1) vector-scalar Galileon.

▶ How does the theory look? · · ·



Partial Conclusion:
▶ Add L4A and L5A to the Horndeski Lagrangian

L=L2 + L3 + L4 + L5 + L4A + L5A,

L2 = G2(π,X),

L3 = G3(π,X)2π,

L4 = G4(π,X)R− 2G4X(π,X)
[
(2π)

2 − π;mnπ
;mn

]
,

L5 = G5(π)G
mnπ;mn ,

L4A = −1

4
G4(π,X)F 2 +G4,X Fµ

σFνσ∇µπ∇νπ

L5A = G5

(
1

8
FµνFµ

ρ(−4∇ν∇ρπ + gνρ2π) +
1

2
Fµν∇σF

νσ∇µπ

)
with this theory, automatically

cg(t)

c(t)
= 1
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3. GWs → DE?

▶ In general, with G4X , G5 ̸= 0,

GWs → DE decay channels hss and hhs

▶ Problem holds in Beyond Horndeski theory LBH (GLPV) and in
any disformally related theory

LBH = Horndeski Theory + LF4 (11)

LF4 = F4(π,X) ϵµνρσ ϵµ
′ν′ρ′

σ π;νν′ π;ρρ′ π;µ π;µ′

▶ Usual conclusion without DE — Photon couplings:
Need! F4 = G5 = G4X = 0
Creminelli, Lewandowski, Tambalo Vernizzi (2018) JCAP 12, 025 [arXiv:1809.03484]

▶ Conclusion changes with DE — Photon couplings!



3. DE — Photon couplings: GWs ↛ DE
▶ GW decay is suppressed if

F4

(
4G4 +X(2G4,X + 3G5,π)

)
+X F4,X

(
2G4 +XG5,π

)
= 0

+4G2
4,X + 4G4G4,XX +G5,π

(
4G4,X + 2XG4,XX +G5,π

)
(12)

Creminelli, Lewandowski, Tambalo Vernizzi (2018) JCAP 12, 025 [arXiv:1809.03484]

▶ Without DE — Photon couplings F4 =
−2G4,X

X and G5 = 0 by
cg = c = 1.

▶ With DE — Photon couplings F4 is free: use this Freedom and
satisfy Eqn. (12)!!

F4(π,X) =
1

2X2

(
2G4−X(4G4,X+G5,π)+

4J4(π)

2G4 +XG5,π

)
, (13)



3. SUMMARY

L = LHorndeski + LBeyond Horndeski(F4(π,X)) + LBH4A
+ L5A , (14)

LBH4A
= −G4

4
F 2 +

2G4,X +X F4(π,X)

2
(Fµνπ

µ)2 ,

L5A = G5(π)

(
1

8
FµνFµ

ρ(−4∇ν∇ρπ + gνρ2π) +
1

2
Fµν∇σF

νσ∇µπ

)
Automatically luminal and with suppressed GW decay (Notice, this
theory is NOT disformally related to Maxwell electrodynamics).

We are left with 3 free potentials of π, X (namely, G2, G3, G4(π,X))
and 2 free potentials of π (namely, G5, J4(π)).



Conclusions
▶ We obtained an extension of Beyond Horndeski theory Eqn (14)

that
▶ automatically propagates luminal Gravitational waves, cg(t)

c(t)
= 1

▶ GWs do not decay into Dark Energy,

▶ has nonminimal couplings of the Scalar of Dark Energy to both
the Graviton and the Photon

▶ This is the largest Beyond Horndeski theory (and DHOST) that
enjoys this property. F5 and other DHOST quad+qubic remain
ruled out.

▶ orthogonal tests to Modifications of Gravity? Pandora’s Box??
Ferreira, Wolf, Read, (2025). The Spectre of Underdetermination in Modern Cosmology

2405.02281

and, 2412.13460

https://inspirehep.net/literature/2783270


Thanks for your attention!



Support slides:



(A) Horndeski Theory + Dark Energy—Photon couplings

▶ One possibility: First, take 5D Horndeski theory, just as a tool,

▶ compactify with the Ansatz (16) and the Cylinder condition

(5)gBC =

(
gµ ν + Aµ Aν Aµ

Aν 1

)
, (16)

▶ 4D fields Aµ and g are but components of (5)g

▶ their speeds are bound to be the same ...

▶ ... But, caveat, we ignore the Dilaton −→ compute speeds and
check



Quadratic Action
▶ Quadratic action about FLRW, With hij Graviton and Ai(t, x⃗)

Photon perturbation:

Ai(t, x⃗) decouples

▶ Quadratic action for Graviton and Photon read,

SGraviton =
1

2

∫
dt d3x a3

(
Gτ ḣ

2
ij −

Fτ

a2
(∂khij)

2

)
, (17)

SPhoton =
1

4

∫
dt d3x a

(
GA Ȧ2

i −
FA

a2
(∂kAi)

2

)
, (18)

▶ Simple relation SGraviton to SPhoton,

GA = Gτ +∆l (19)
FA = Fτ . (20)



Quadratic Action
▶ Speed of GWs and Light, respectively, on the cosmological

medium,
c2g = Fτ

Gτ
, c2 = FA

GA

with FA = Fτ , GA = Gτ +∆l

c2g
c2

=
Fτ

Gτ

GA

FA
=

GA

Gτ
= 1 +

∆l

Gτ
, (21)

with ∆l = −2π̇XHG5,X

▶ We get Luminal GWs with G5,X = 0:

nonminimal couplings G4(π,X), G5(π) preserve

c2g(t)

c2(t)
= 1 . (22)



With Dilaton

▶ Where does G5X = 0 come from?

on FLRW

c2g
c2

= 1− 2π̇ X (H − l)G5,X

Gτ
, (23)

l = 0 in our case

(Cross check: with Dilaton (ϕ), l = ϕ̇
ϕ
. 5D hom/ isotropy means l = H).



Disformally related? Not quite

▶ L4A is disformally equivalent to Maxwell, (Babichev, Charmousis,
Muntz, Padilla and Saltas (2024))

(T : gµν → g̃µν = A(π,X) gµν +B(π,X)π;µπ;ν)

−1

4
F 2 T−→ L4A = −1

4
G4 F

2 +G4,X Fµ
σFνσ π

;µπ;ν

But, notice that L5A is NOT disformally equivalent to Maxwell,

−1

4
F 2 T↛L5A = G5

(
1

8
FµνFµ

ρ(−4π;νρ + gνρ2π) + · · ·
)

this will be essential in what follows.

S. Mironov, A. Shtennikova and M. V-V (2025), Phys. Rev. D 111,
L101501 [arXiv:2412.13460]


