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Motivations

- the detection of gravitational waves
- discovery of compact objects, e.g. like supermassive black
hole in at the heart of the M87 galaxy and our Milky Way galaxy
- exploring of black hole shadows, photon spheres, accretion
discs, ISCO (innermost stable circular orbits) etc
- modified gravitational theories
- the study of strong field regime in gravity
- supergravities, superstrings
- black hole/brane solutions with several charges related to Lie
algebras, polynomials and Toda chains
[V.D.I., Black brane solutions governed by fluxbrane
polynomials, J. Geom. Phys., 86, 101-111 (2014);
arXiv:1401.0215.]



The action of the model

S =
1

16πG

∫
d4x

√
|g|
{

R[g]− gµν∂µ~ϕ∂ν~ϕ

−1
2

e2~λ1~ϕF (1)
µν F (1)µν − 1

2
e2~λ2~ϕF (2)

µν F (2)µν

}
, (2.1)

where g = gµν(x)dxµ ⊗ dxν is the metric, |g| = | det(gµν)|,
~ϕ = (ϕ1, ϕ2) is the vector of two scalar fields,
F (i) = dA(i) = 1

2F (i)
µν dxµ ∧ dxν is the 2-form with A(i) = A(i)

µ dxµ,
i = 1,2; G is the gravitational constant,~λ1 = (λ1i) 6=~0,
~λ2 = (λ2i) 6=~0 are the dilatonic coupling vectors, which obey

~λ1 6= −~λ2, (2.2)

and R[g] is the Ricci scalar. Here, we set c = 1.



Dyonic-like black hole solution
The BH solution [A.N. Malybayev, K.A. Boshkayev, V.D.I., Eur.
Phys. J. C 81, 475 (2021)] to the action (2.1) is defined on the
manifoldM = R× (2µ,+∞)× S2, and has the following form

ds2 = Ha

{
−H−2a

(
1− 2µ

R

)
dt2

+ +
dR2

1− 2µ
R

+ R2dΩ2

}
, (2.3)

ϕi = νi lnH, (2.4)

with the 2-form defined by

F (1) =
Q1

H2R2 dt ∧ dR, F (2) = Q2τ, (2.5)

where Q1 is (color) electric charge and Q2 is (color) magnetic
one.



Here µ > 0, dΩ2 = dθ2 + sin2 θdφ2, where 0 < θ < π and
0 < φ < 2π, τ = sin θdθ ∧ dφ is volume form on S2.
The moduli function is defined as

H = 1 +
P
R
. (2.6)

The parameter P > 0 obeys

P(P + 2µ) =
1
2

Q2, (2.7)

or, equivalently

P = −µ +

√
µ2 +

1
2

Q2. (2.8)



The parameters of the solution are defined as follows

a =
(~λ1 +~λ2)

2

∆
, (2.9)

∆ ≡ 1
2
(~λ1 +~λ2)

2 +~λ2
1
~λ2

2 − (~λ1~λ2)
2, (2.10)

νi =
λ1i~λ2(~λ1 +~λ2)− λ2i~λ1(~λ1 +~λ2)

∆
, (2.11)

i = 1,2 and

Q2
1 =

~λ2(~λ1 +~λ2)

2∆
Q2, Q2

2 =
~λ1(~λ1 +~λ2)

2∆
Q2. (2.12)

Here, the additional constraints are imposed

~λ1(~λ1 +~λ2) > 0, ~λ2(~λ1 +~λ2) > 0. (2.13)

Note that the restrictions (2.13) imply inequalities~λs 6=~0,
s = 1,2, and (2.2).



It can be readily verified that

∆ > 0, (2.14)

is valid for~λ1 6= −~λ2, since 1
2 (
~λ1 +~λ2)

2 > 0 and

C = ~λ2
1
~λ2

2 − (~λ1~λ2)
2 ≥ 0, (2.15)

because of the Cauchy–Schwarz inequality. Here, C = 0 if and
only if vectors~λ1 and~λ2 are collinear. Relation (2.15) implies

0 < a ≤ 2. (2.16)

For non-collinear vectors~λ1 and~λ2 we find 0 < a < 2 , and for
collinear ones we get a = 2 .



The gravitational mass (for G = 1) reads:

M = µ +
a
2

P. (2.17)

The mass M and charge Q obey the inequality [MBI]

Q2

M2 <
8
a2 . (2.18)

Defining eqs. (2.9)-(2.12) imply

~ν2 =
a(2− a)

2
, (2.19)

Q2
1 + Q2

2 =
a
2

Q2. (2.20)

For vanishing a→ 0 we get νi → 0, Qi → 0 and ϕi → 0 and
ds2 reduces to the Schwarzschild metric.
In the case a = 2 we get the Reissner–Nordström metric.



Geodesic equations
The eqs. for geodesics xα(τ) are derived from the Lagrangian:

L =
1
2

gαβ(x)ẋαẋ β. (2.21)

They are equivalent to the Euler-Lagrange equations:

d
dτ

(
∂L
∂ẋα

)
− ∂L

∂xα
= 0. (2.22)

Here ẋα = dxα/dτ = uα is the 4-velocity vector, τ is affine
parameter for null geodesics and the proper time for a massive
point-like particle, respectively, α = 0,1,2,3.
For conserved energy we get

E = L =
1
2

gαβ(x)uαuβ = −k/2. (2.23)

Here, we put k = 0,1, which corespond to null, and timelike
geodesics, respectively.



Integrals of motion

We put θ = π/2. For our metric the (reduced) Lagrangian is:

L∗ =
1
2

Ha

−H−2a
(

1− 2µ

R

)
ṫ2 +

Ṙ2

1− 2µ
R

+ R2φ̇2

 . (2.24)

Given cyclic coordinates t (time) and φ (angle), the system
possesses conserved quantities described by the integrals of
motion

Ẽ = H−a
(

1− 2µ

R

)
ṫ , L̃ = HaR2φ̇, (2.25)

related for k = 1 to the total energy E = Ẽm and angular
momentum L = L̃m, respectively, of a test (neutral) point-like
particle of mass m.



Effective potential
For the line element from Eq. (2.3) we get

−H−a
(

1− 2µ

R

)
ṫ2 +

HaṘ2

1− 2µ
R

+ HaR2φ̇2 = −k . (2.26)

Using Eqs. (2.25), this relation simplifies to the following
differential equation:

− HaẼ2(
1− 2µ

R

) +
HaṘ2

1− 2µ
R

+
H−aL̃2

R2 = −k , (2.27)

which can be presented in a compact form:

Ṙ2 + V 2 = Ẽ2, (2.28)

by using the effective potential

V =

√√√√H−2a
(

1− 2µ

R

)(
Hak +

L̃2

R2

)
. (2.29)



Radial equation

The Lagrange equation for the radial coordinate R may be
presented in the following form

R̈ + V
∂V
∂R

= 0. (2.30)

For Ṙ 6= 0, it follows just from Eq. (2.28).
For circular trajectory with Ṙ = 0, the radial equation (2.30)
reads

∂V
∂R

= 0, (2.31)

while equation (2.28) takes the following form

V 2 = Ẽ2. (2.32)

Eq. (2.31) is not a direct consequence of Eq. (2.28) and
requires separate consideration.



Circular null geodesics

Here, we consider circular motions, which are described by
condition: Ṙ = 0 so V = Ẽ .
For k = 0 we get

R0 ≡ 1
2

[
P(a− 1) + 3µ

+
√
(P(1− a)− 3µ)2 − 4Pµ(2a− 3)

]
, (2.33)

the radius of the photon sphere, obeying R0 > 2µ.



Black hole shadow
The standard consideration gives for the shadow angle (k = 0):

ϑsh = arcsin

(
V (Robs)

V (R0)

)
, (2.34)

for all Robs > R0. Here, Robs describes the position of an
observer, and R0 is the radius of the photon sphere.
For Robs � µ and Robs � P we get:

ϑsh =
b∗

Robs
+ O

(
1

R2
obs

)
, (2.35)

as Robs → +∞. Here

b∗ =
1

V (R0)
(2.36)

is critical impact parameter.



Quasinormal modes
The radius of photonic sphere and the effective potential
U(R) = (V (R, L̃2))2 (k = 0) with “quantized” L̃2, i.e. replaced
by l(l + 1),

Ueik (R) =
A(R)l(l + 1)

C(R)
(2.37)

where l = 0,1,2, . . . , may be used for calculation of the
“spectrum” of quasinormal modes (QNM) for test fields in the
eikonal approximation, i.e. when l → +∞. Here A = A(R) is
redshift function and C(R) is central function for our metric
ds2 = −Adt2 + A−1dR2 + CdΩ2.
The test scalar field Ψ obeys standard Klein-Fock-Gordon
(KFG) equation

∆Ψ =
1√
|g|

∂µ(
√
|g|gµν∂µΨ) = 0. (2.38)



Eikonal QNM
We use the ansatz

Ψ = e−iωt Ψ∗(R)Ylm, (2.39)

where Ylm are the spherical harmonics and Ψ∗(R) obey QNM
boundary conditions with |Ψ∗(R)| → +∞: as R → 2µ and
R → +∞.
The asymptotic eikonal QNM “spectrum” (as l → +∞):s

Re(ω) =

(
l +

1
2

)
H−a

0 F 1/2
0 R−1

0 , (2.40)

Im(ω) = −
(

n +
1
2

)
H−a−1/2

0 F 1/2
0 R−3/2

0 D1/4, (2.41)

where
H0 = 1 +

P
R0

, F0 = 1− 2µ

R0
(2.42)

where D = (P(1− a)− 3µ)2 − 4Pµ(2a− 3). Here
n = 0,1,2, . . . is the overtone number (n� l).



Circular geodesics for massive test particles
We now focus on timelike geodesics (k = 1) with Ṙ = 0. The
radial equation (2.31) ( ∂V

∂R = 0) implies

L2

m2 =
HaR2 [aP(R − 2µ) + 2µ(P + R)

]
2∆0

, (2.43)

where

∆0 = R2 +((1−a)P−3µ)R +(2a−3)Pµ = (R−R0)(R−R−),
(2.44)

R0 > 2µ and R− < 2µ.
After substitution of Eq. (2.43) to Eq. (2.29) and Eq. (2.32)
we get

E2

m2 =
H−a(R − 2µ)2 [2R − P(a− 2)

]
2∆0

. (2.45)

The distinctions between the curves for different values of a are
larger for larger values of Q/µ.



Effective potential for massive particles (Q/µ = 0.6)
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Orbital angular momentum of massive test particle
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Energy of massive test particle (Q/µ = 0.6)
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Equations (2.43) (for L2) and (2.45) (for E2) reveal that for
timelike geodesics, motion occurs only when ∆0 > 0, or, if

R > R0. (2.46)

It follows from Eq. (2.43) and Eq. (2.45) that

1
m2

dL2

dR
=

R2(1 + P/R)a

∆2
1

W , (2.47)

1
m2

dE2

dR
=

(1− 2µ/R)(1 + P/R)−a

∆2
1

W , (2.48)

with
∆1 =

2
R(R + P)(R − 2µ)

∆0, (2.49)

and

W =
(2µ)5

R3(R + P)3(R − 2µ)2 F . (2.50)



Master polynomial

F = F (x) = (2ap + 2)x4 + (6a(1− a)p2 + (6− 12a)p− 6)x3

+p(2(a− 2)(a− 1)ap2 + 3(5a2 − 9a + 2)p + 12a− 18)x2

−p2((a− 2)(4a2 − 7a + 1)p + 9a2 − 25a + 18)x

+(a− 2)(a− 1)(2a− 3)p3. (2.51)

Here x = R/(2µ), p = P/(2µ).



Innermost stable circular orbits (ISCO)

ISCO is a crucial concept in the study of objects moving around
BHs, e.g. accretion disks.
It may be verified that

∂2V 2

∂R2 = 2V
∂2V
∂R2 =

(1− 2µ/R)(1 + P/R)−a

∆1
W . (2.52)

Here ∆1 > 0, since ∆ > 0.
ISCO obeys

∂2V
∂R2 = 0, (2.53)

or, equivalently, dL2

dR = 0 or dE
dR = 0. This implies W = 0 and we

get the master equation for x = xisco = Risco/(2µ):

F (x) = 0. (2.54)



Solution to master equation

Proposition. Let us consider 4-th order polynomial master
equation F (x) = 0, where 0 < a < 2 and p > 0. Then, the
master equation F (x) = 0 has one and only one solution
x∗ = x∗(a,p) which satisfies

x∗ > 1; (2.55)

moreover, this solution obeys the bounds

x∗ > x0 ≡
1
2
[(a− 1)p + 3/2 +

√
d ] > 1, (2.56)

where d = (1− a)2p2 + (3− a)p + 9/4 > 0.



Key proposition on circular geodesics (k = 1)

The Proposition is proved in [BTIMNU, 2025]. It tells us about
existence and uniqueness of Risco > 2µ, which also obeys the
inequality Risco > R0 (R0 is the radius of photon sphere).
Theorem. The circular time-like geodesics for massive neutral
point-like particles are described by arbitrary radius R > R0,
where R0 is the radius of photon sphere. The solutions with
R > Risco = 2µxisco are stable ( ∂2V

∂R2 > 0), while solutions with

R0 < R < Risco are unstable ( ∂2V
∂R2 < 0).

The analytical solution for xisco is presented in Appendix.



Figure for stable and unstable zones



3D plot of xISCO and x0 as functions of a and p
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The limit p → +∞ for 1 < a < 2

For 1 < a < 2 we have the following asymptotic relation

xisco(a,p) ∼ h(a)p, (2.57)

as p → +∞, where

h(a) = (3/2)(a− 1) + (1/2)
√
(a− 1)(5a− 1) > 0. (2.58)

For 1 < a < 2 the relation for radius of photonic sphere (2.56)
implies

x0(a,p) ∼ (a− 1)p, (2.59)

as p → +∞. Here x0 < xisco.



The limit p → +∞, 0 < a < 1

For 0 < a < 1 we have asymptotical relation

xisco(a,p)→ x∞(a), (2.60)

as p → +∞, where

x∞(a) =

√
−7a2 + 10a + 1− 4a2 + 7a− 1

4a(1− a)
> 1. (2.61)

For 0 < a < 1 the relation for radius of photonic sphere (2.56)
implies

x0(a,p)→
3− 2a

2(1− a)
, (2.62)

as p → +∞. Here x0 < xisco.



RISCO for fixed µ and P → +∞

Let us fix the horizon radius Rh = 2µ. Then, in the limit
P → +∞, when M → +∞, |Q| → +∞ and

Q2

M2 →
8
a2 (extremal BH limit). (2.63)

we obtain
RISCO ∼ h(a)P ∼ h(a)|Q|/

√
2, (2.64)

for 1 < a < 2 and
RISCO → x∞(a)2µ, (2.65)

for 0 < a < 1.



The effective potential with L = LISCO for different a
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Here dots show the inflection points (corresponding to RISCO).



Efficiency of matter-to-radiation conversion

The parameter of the efficiency of matter-to-radiation
conversion reads

η = [1− Ẽ(RISCO)]× 100%. (2.66)

Here Ẽ(RISCO) = E(RISCO)/m is given by relation (2.45) and
RISCO = 2µx4, where x4 = x4(a,p) > x0 > 1 is solution to
master equation.
It is shown numerically that for 0 < a < 2

η(0,0) < η = η(a,p) < η(2,p) < η(2,p = +∞). (2.67)

where η(0,0) ≈ 5.72% (Schwarzschild case) [Misner, Thorne,
Wheeler] and η(2,p = +∞) ≈ 8.14% (extremal
Reissner–Nordström case)
[Bokhari,Rayimbaev,Ahmedov,2020].



Efficiency as a function of Q/M and a
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Examples

For selected values of a = 0,1,2, we overview the following
expressions for xisco.
For the Schwarzschild BH (a = 0), the innermost stable circular
orbit (ISCO) radius is [Kaplan, 1949]:

xisco(a = +0) = 3. (3.1)

The dimensionless radius of photon sphere reads

x0(a = +0) = 3/2. (3.2)



For a = 1, which corresponds to the Sen BH solution [Sen,
1992], the result is readily obtained
[Boshkayev,Suliyeva,Iv.,Urazalina,2024]

xisco(a = 1) = 1 + (1 + p)
1
3 + (1 + p)

2
3 . (3.3)

For a = 2, we are led to the Reissner–Nordström BH case with
the ISCO radius given by [Pugliese, Quevedo, Ruffini, 2011]

xisco(a = 2) = 1 + p + X
1
3

2 +
1 + p + p2

X
1
3

2

, (3.4)

where

X2 =

2 + p(1 + p)
[
7 + 4p(1 + p) +

√
5 + 4p(1 + p)

]
2(1 + 2p)

.



Extension to two independent charges for a = 2

Let us put

(~λ1)
2 = (~λ2)

2 = ~λ1 ~λ2 =
1
2
. (3.5)

We get a = 2. The solution has a two parameter extension:

H2 =

(
1 +

P
R

)2

−→ H1H2 =

(
1 +

P1

R

)(
1 +

P2

R

)
. (3.6)

We have two independent charge Q1 and Q2.
The master equation for radius of photon sphere x0 is qubic one

x3 + .. = 0. (3.7)

[V.D.I, U. Kayumov, A.N. Malybayev, G.S. Nurbakova, Grav.
Cosm., 2025].



Conclusions
- We have considered the solution for a dyonic-like dilatonic BH
[MBI] described by parameters: 0 < a < 2 , µ > 0, P > 0.
- We have explored circular null geodesics and related topics:
BH shadows and QNM.
- We have investigated circular time-like geodesics .
- We have calculated analytically RISCO > R0, where R0 is the
radius of photonic sphere. .
- The circular orbits of massive particles with radius R which
obey R > RISCO are shown to be stable while those satisfying
R0 < R < RISCO are shown to be unstable.
- We have found an analytical relation for the efficiency of
converting matter into radiation η and have proved
(numerically) bounds on it: ηSchw < η < ηRN,ext .
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