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Motivations

- the detection of gravitational waves

- discovery of compact objects, e.g. like supermassive black
hole in at the heart of the M87 galaxy and our Milky Way galaxy
- exploring of black hole shadows, photon spheres, accretion
discs, ISCO (innermost stable circular orbits) etc

- modified gravitational theories

- the study of strong field regime in gravity

- supergravities, superstrings

- black hole/brane solutions with several charges related to Lie
algebras, polynomials and Toda chains

[V.D.1., Black brane solutions governed by fluxbrane
polynomials, J. Geom. Phys., 86, 101-111 (2014);
arXiv:1401.0215.]



The action of the model
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where g = g, (x)dx" ® dx" is the metric, |g| = | det(gyv)|,

@ = (¢', ?) is the vector of two scalar fields,

FU) = gl = TFL) dxt A dx is the 2-form with A = A dx#,
i =1,2; Gis the gravitational constant, Ay = (A4;) # 0,

Ao = (Agj) # 0 are the dilatonic coupling vectors, which obey

Ay # =My, (2.2)

and R|[g] is the Ricci scalar. Here, we set ¢ = 1.



Dyonic-like black hole solution

The BH solution [A.N. Malybayev, K.A. Boshkayev, V.D.I., Eur.
Phys. J. C 81, 475 (2021)] to the action (2.1) is defined on the
manifold M = R x (2u, +00) x S?, and has the following form

ds® = Ha{_H—za (1 2”) ar?

R

2
+ dh +R2d02} (2.3)

. . 1 - H
o' = v'InH, (2.4)

with the 2-form defined by

Fo = @ gindr F® —q 25
~ 2R A 2T, ( . )

where Qq is (color) electric charge and (» is (color) magnetic
one.



Here u > 0, dO? = db? + sin? 8d¢?, where 0 < 6 < 7 and
0 < ¢ < 2m, T =sinfdO A d¢ is volume form on S?.
The moduli function is defined as

P
H=1+ 5. (2.6)

The parameter P > 0 obeys

P(P+2u) = %02, (2.7)

P:—y+\/y2+%02. (2.8)

or, equivalently



The parameters of the solution are defined as follows
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Here, the additional constraints are imposed

7\1 (7\1 —|—7\2) >0, 7\2(7\1 + 7\2) > 0.

Note that the restrictions (2.13) imply inequalities As # 0,

s=1,2,and (2.2).

(2.12)

(2.13)



It can be readily verified that
A >0, (2.14)
is valid for A # —Ag, since (A1 + A2)2 > 0 and

C=A%213 - (A142)2 >0, (2.15)

because of the Cauchy—Schwarz inequality. Here, C = 0 if and
only if vectors A4 and A, are collinear. Relation (2.15) implies

0<a<2 (2.16)

For non-collinear vectors 14 and A, we find 0 < a < 2, and for
collinear ones we geta=2.



The gravitational mass (for G = 1) reads:
a
M:y+§P. (2.17)

The mass M and charge Q obey the inequality [MBI]

Q@ 8
A < 2z (2.18)
Defining egs. (2.9)-(2.12) imply
2 3(22—a> (2.19)
Q2+ Q2= goz. (2.20)

For vanishing a — 0 we get v/ — 0, @ — 0 and ¢/ — 0 and
ds? reduces to the Schwarzschild metric.
In the case a = 2 we get the Reissner—Nordstrém metric.



Geodesic equations
The egs. for geodesics x* (1) are derived from the Lagrangian:

L= %gaﬁ(x)x“xﬁ. (2.21)
They are equivalent to the Euler-Lagrange equations:
d [dL oL
P <axa> o 0. (2.22)

Here x* = dx*/dt = u* is the 4-velocity vector, T is affine
parameter for null geodesics and the proper time for a massive
point-like particle, respectively, « = 0,1, 2, 3.

For conserved energy we get

E=L= 1ga x)u*uP = —k/2. (2.23)
o up

Here, we put kK = 0, 1, which corespond to null, and timelike
geodesics, respectively.



Integrals of motion

We put 6 = 7r/2. For our metric the (reduced) Lagrangian is:

2u) | R?
_ al| 1y-2afq4_  <H\;e
L.=—-H H <1 R)T—f—_l_zlg
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2

- R24>2] . (2.24)

Given cyclic coordinates f (time) and ¢ (angle), the system
possesses conserved quantities described by the integrals of
motion

- 2u\ ., .
E—Ha (1 - Eﬁ‘) L= HR%, (2.25)
related for k = 1 to the total energy E = Em and angular
momentum L = Lm, respectively, of a test (neutral) point-like
particle of mass m.



Effective potential
For the line element from Eq. (2.3) we get

A

a1 MR +HAR%? = —k.  (2.26)
R 1_ 2;5’

Using Egs. (2.25), this relation simplifies to the following

differential equation:
Ha E2 Ha RZ Hfal2

_(1_2u>+1_2ﬂ+ 2 = —K, (2.27)
R R
which can be presented in a compact form:

R? + V2 = E?, (2.28)

by using the effective potential

_ | y2a 2u o L
VJH 2 <1—R> (H k+R2>. (2.29)




Radial equation

The Lagrange equation for the radial coordinate R may be
presented in the following form

1Y
R+ Vag=0. (2.30)

For R # 0, it follows just from Eq. (2.28).
For circular trajectory with R = 0, the radial equation (2.30)

reads
oV

oR
while equation (2.28) takes the following form

=0, (2.31)

V2 = E2 (2.32)

Eq. (2.31) is not a direct consequence of Eq. (2.28) and
requires separate consideration.



Circular null geodesics

Here, we consider circular motions, which are described by
condition: R=0so V = E.
For k = 0 we get

Ro

;[P(a—1)+3y

+ J(P(1—a)—3u)2 —4Pu(2a-3)|,  (2.33)

the radius of the photon sphere, obeying Ry > 2.



Black hole shadow
The standard consideration gives for the shadow angle (k = 0):

¥sp = arcsin ( Véf,;g;)) , (2.34)

for all Ryops > Ro. Here, R,ps describes the position of an
observer, and Ry is the radius of the photon sphere.
For Rops > u and Ryps > P we get:

b. 1
Osh = +O0( =1, 2.35
sh Robs (Rgbs> ( )
as Ryps — +o0. Here
by, = 1 (2.36)
" V(Ro) '

is critical impact parameter.



Quasinormal modes

The radius of photonic sphere and the effective potential
U(R) = (V(R,[?))? (k = 0) with “quantized” L2, i.e. replaced
by I(/+1),
AR)I(1+1)

C(R)
where / =0,1,2,..., may be used for calculation of the
“spectrum” of quasinormal modes (QNM) for test fields in the
eikonal approximation, i.e. when | — +oco. Here A= A(R) is
redshift function and C(R) is central function for our metric
ds? = —Adt? + A~ 1dR? + CdOY2.
The test scalar field ¥ obeys standard Klein-Fock-Gordon
(KFG) equation

Usik(R) = (2.37)

AY = —3,(\/lglg"a,¥) = 0. (2.38)

Vgl



Eikonal QNM

We use the ansatz
Y = e 'Y (R)Yim, (2.39)

where Y, are the spherical harmonics and ¥..(R) obey QNM
boundary conditions with |¥.(R)| — +c0: as R — 2u and

R — +oo.

The asymptotic eikonal QNM “spectrum” (as | — +o0):s

Re(w) = (/+ ;) Hy 2F3"2R, ", (2.40)
Im(w) = — <n+ ;) Hy @ V2F)/2R %214, (2.41)
where p 5
_q. " _q_cH
Ho =1+ o' Fo=1 Ao (2.42)

where D = (P(1 — a) — 3u)2 — 4Pu(2a— 3). Here
n=20,1,2,... is the overtone number (n < /).



Circular geodesics for massive test particles

We now focus on timelike geodesics (k = 1) with R = 0. The
radial equation (2.31) (aR = 0) implies

2 H3R?[aP(R—2p)+2u(P+ Al
m 2Ag

(2.43)

where

Ao =R?+((1—a)P—-3u)R+(2a—3)Pu = (R—Ry)(R—R_),
(2.44)
Ro > 2u and R_ < 2.
After substitution of Eq. (2.43) to Eq. (2.29) and Eq. (2.32)
we get
E2  H3(R-—2u)? [2R —P(a— 2)]
m 270 ‘
The distinctions between the curves for different values of a are
larger for larger values of Q/ .

(2.45)



Effective potential for massive particles (Q/u = 0.6)
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Orbital angular momentum of massive test particle
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Energy of massive test particle (Q/u = 0.6)
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Equations (2.43) (for L?) and (2.45) (for E?) reveal that for
timelike geodesics, motion occurs only when Ag > 0, or, if

R > Ro. (2.46)

It follows from Eq. (2.43) and Eq. (2.45) that
1 dl? R?(1+P/R)?

—gh = 32 W, (2.47)
1 de2  (1—2u/R)(1+P/R)2
g = 22 W, (2.48)
with 5
Ay = Ao, 2.49
' R(R+P)(R—2u)° (2.49)
and 5
W= (2p) F. (2.50)




Master polynomial

F = F(x) = (2ap + 2)x* + (6a(1 — a)p? + (6 — 12a)p — 6)x°
+p(2(a—2)(a—1)ap? +3(5a8° —9a+2)p+ 12a — 18)x>
—p?((a—2)(4a8® —7a+1)p+9a° — 25a+ 18)x

+(a—2)(a—1)(2a—3)p°. (2.51)

Here x = R/(2u), p = P/(2u).



Innermost stable circular orbits (ISCO)

ISCO is a crucial concept in the study of objects moving around
BHs, e.g. accretion disks.
It may be verified that

02?2 2V (1—-2u/R)(1+P/R)-2

—_— = W. 2.52
oR? 2V8H2 Aq (2.52)
Here Ay > 0, since A > 0.
ISCO obeys
22V
3R = 0, (2.53)

or, equivalently, %—L,; =0or g—E = 0. This implies W = 0 and we
get the master equation for x = Xjsco = Rjsco/ (21):

F(x) =0. (2.54)



Solution to master equation

Proposition. Let us consider 4-th order polynomial master
equation F(x) = 0, where 0 < a< 2 and p > 0. Then, the
master equation F(x) = 0 has one and only one solution
X« = X.(a, p) which satisfies

X > 1: (2.55)

moreover, this solution obeys the bounds

x*>xoz%[(a—1)p+3/2+\fd]>1, (2.56)

where d = (1 — a)?p?>+ (3—a)p+9/4 > 0.



Key proposition on circular geodesics (k = 1)

The Proposition is proved in [BTIMNU, 2025]. It tells us about
existence and uniqueness of Rjsc, > 2, which also obeys the
inequality Risco > Ro (Ry is the radius of photon sphere).
Theorem. The circular time-like geodesics for massive neutral
point-like particles are described by arbitrary radius R > Ry,
where Ry is the radius of photon sphere The solutions with

R > Risco = 2uXsco are stable ( call 5 > 0), while solutions with
Ry < R < Rjsco are unstable ( s < 0).

The analytical solution for xjsc, is presented in Appendix.



Figure for stable and unstable zones
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3D plot of x;5c0 and xp as functions of aand p




The limitp — oo for1 <a< 2

For 1 < a < 2 we have the following asymptotic relation

Xisco(@, P) ~ h(a)p, (2.57)

as p — +oo, where

h(a) = (3/2)(a— 1)+ (1/2),/(a—1)(5a—1) > 0. (2.58)

For 1 < a < 2 the relation for radius of photonic sphere (2.56)
implies
Xo(a p) ~ (a—1)p, (2.59)

as p — +oo0. Here Xy < Xjsco-



The limitp — 40,0 < a < 1

For 0 < a < 1 we have asymptotical relation
Xisco(@, P) — Xo(a), (2.60)

as p — +oo, where

V78 +10a+1-42%+7a—1

X (@) 4a(1 - a)

>1.  (2.61)

For 0 < a < 1 the relation for radius of photonic sphere (2.56)
implies
3—2a

2 a) (2.62)

xo(a p) —

as p — +oo. Here xp < Xijsco-



Rsco for fixed U and P — +o0

Let us fix the horizon radius Ry = 2u. Then, in the limit
P — +o00, when M — +o0, |Q| — +00 and

Q? 8 | limi
w2 (extremal BH limit). (2.63)
we obtain
Risco ~ h(a)P ~ h(a)|Q|/ V2, (2.64)
for1 <a< 2and
Risco — X (a)2u, (2.65)

for0 < a< 1.



The effective potential with L = L;s¢o for different a
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Here dots show the inflection points (corresponding to R;sco)-



Efficiency of matter-to-radiation conversion

The parameter of the efficiency of matter-to-radiation
conversion reads

n = [1 — E(RISCO)] x 100%. (266)

Here E(Risco) = E(Risco)/m is given by relation (2.45) and
Risco = 2uxs, where x4 = x4(a, p) > xo > 1 is solution to
master equation.

It is shown numerically that for0 < a < 2

7(0,0) <y =n(ap) <n@2p) <n2p=-+wo). (267)

where 7(0,0) ~ 5.72% (Schwarzschild case) [Misner, Thorne,
Wheeler] and (2, p = +00) ~ 8.14% (extremal
Reissner—Nordstrdm case)
[Bokhari,Rayimbaev,Ahmedov,2020].



Efficiency as a function of Q/M and a
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Examples

For selected values of a= 0, 1, 2, we overview the following

expressions for Xjsgo-
For the Schwarzschild BH (a = 0), the innermost stable circular
orbit (ISCO) radius is [Kaplan, 1949]:

Xisco(@ = +0) = 3. (3.1)
The dimensionless radius of photon sphere reads

Xo(a= +0) =3/2. (3.2)



For a = 1, which corresponds to the Sen BH solution [Sen,
1992], the result is readily obtained
[Boshkayev,Suliyeva,lv.,Urazalina,2024]

Xisoo(@=1)=1+(1+p)s +(1+p)s. (3.3)

For a = 2, we are led to the Reissner—Nordstrom BH case with
the ISCO radius given by [Pugliese, Quevedo, Ruffini, 2011]

11 2
Xiso(@=2) = 1+p+ X3+ —PEP (34
X3
where
2+p(1+p)|7+4p(1 +p)+/5+4p(1+p)
Xp =

2(1 + 2p)



Extension to two independent charges for a = 2

Let us put

(A1)2 = (A2)? = Aiha = 5. (3.5)

We get a = 2. The solution has a two parameter extension:

P2 P P
H2:<1+R> —>H1H2:<1+F;><1+R2>. (3.6)

We have two independent charge Q; and Q».
The master equation for radius of photon sphere Xy is qubic one

x3+.=0. (3.7)

[V.D.l, U. Kayumov, A.N. Malybayev, G.S. Nurbakova, Grav.
Cosm., 2025].



Conclusions

- We have considered the solution for a dyonic-like dilatonic BH
[MBI] described by parameters: 0 <a<2,u >0, P> 0.

- We have explored circular null geodesics and related topics:
BH shadows and QNM.

- We have investigated circular time-like geodesics .

- We have calculated analytically R;sco > Rg, where Ry is the
radius of photonic sphere. .

- The circular orbits of massive particles with radius R which
obey R > R;sco are shown to be stable while those satisfying
Ry < R < Rjsco are shown to be unstable.

- We have found an analytical relation for the efficiency of
converting matter into radiation # and have proved
(numerically) bounds on it: #schw < 171 < 11AN.ext -
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Thank you for your attention!
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