Vacuum polarization effects of pointlike impurity: massive field

Yuri V. Grats, Pavel Spirin

(Moscow State U.)

22nd Lomonosov conference August 21–27, 2025, MSU, Moscow, RF

Table of contents

- Y.V. Grats, P.Spirin, Universe 7, 127 (2021)
- Y.V. Grats, P.Spirin, Eur. Phys. J. Plus 140, 148 (2025)

Content:

- Motivation
- Self-adjoint extension of $-\Delta$
- Hadamard function
- Renormalized ϕ^2
- Basic and auxiliary integrals
- Renormalized $T_{\mu\nu}$
- Conclusions

Conical spaces

Cosmic string: metric (cylindric coords):

$$ds^2 = dt^2 - dz^2 - d\varrho^2 - \beta^2 \varrho^2 d\varphi^2, \qquad 0 < \beta \leqslant 1$$

Geometry:
$$R = 2(1-\beta)\delta_+(\varrho)/\varrho, \qquad \delta\varphi = 2\pi(1-\beta)$$

Phase transition energy scale: $\mu \sim \eta^2 = \frac{1-\beta^2}{8\pi G}$

For
$$\eta=\eta_{\rm GUT}\sim 10^{16}\,{\rm GeV}$$

$$1-\beta\sim 10^{-5} \qquad a\sim \frac{1}{\sqrt{\lambda}\eta}\sim 10^{-29}{\rm cm}$$

Complement:
$$\beta' \equiv 1 - \beta = \frac{\delta \varphi}{2\pi}$$
 $\beta' = 4G\mu$

Klein-Gordon:
$$(\Box + m^2 + \xi R) \phi = 0$$
,

$$\left(\partial_t^2 - \Delta + m^2 + \lambda \delta^{2,3}(\boldsymbol{x})\right) \phi(t, \boldsymbol{x}) = 0.$$

Time factorization: $\phi_{\omega}^{(\pm)}(t, \boldsymbol{x}) = e^{\mp i\omega t} u_{\omega}(\boldsymbol{x}),$

Schrödinger: $Hu_{\omega}(\boldsymbol{x}) = (\omega^2 - m^2)u_{\omega}(\boldsymbol{x})$.

Formal Hamiltonian: $H = -\Delta + \lambda \delta(x)$

Coupling problem & self-adjoint extension

 $\lambda \neq 0$: Hu_{ω} does not belong Hilbert space

 $\lambda = 0$: no interaction!

Renormalization of λ or SAE?

Resolution of laplacian:
$$H = \bigoplus_{l=0}^{\infty} \left(H_l \bigotimes \underbrace{\mathbf{1}}_{\text{angular}} \right)$$
,

where partial Hamiltonians

$$H_l = -\frac{d^2}{dr^2} - \frac{2}{r}\frac{d}{dr} + \frac{l(l+1)}{r^2}, \qquad l = 0, 1, 2, \dots.$$

 H_l are self-adjoint itself for any $l\geqslant 1$,

Self-adjoint extensions of H_0 (s-wave): $-\infty < \alpha \leqslant \infty$

$$H_{0,\alpha} = -\Delta_{0,\alpha} = -\frac{d^2}{dr^2} - \frac{2}{r} \frac{d}{dr}$$

$$\mathcal{D}(H_{0,\alpha}) = \left\{ u_{\alpha} \in L^2((0,\infty); r^2 dr); \ 4\pi\alpha \lim_{r \to +0} r u_{\alpha}(r) = \lim_{r \to +0} [u_{\alpha} + r u_{\alpha}'] \right\}$$

Eigenvalues/Eigenfunctions to $H_{0,\alpha}$:

$$p>0\,, \qquad \qquad u\sim r^{-1/2} \big[J_{1/2}(pr)+k(\alpha)Y_{1/2}(pr)\big]_{\text{def}} + \text{def} + \text{def} + \text{def} + \text{def}$$

Hadamard function

$$p^2 < 0$$
: $\phi(x,t) \sim e^{\pm |p|t} u(x)$

 $\alpha < 0$: bound state: $u_{0,\alpha}(r) = \sqrt{-2\alpha} e^{-4\pi |\alpha| r}/r$

 $\{u_{plm}\}$ — complete set of eigenfunctions of the free Laplacian.

Hadamard function:

$$D_{\alpha}^{(1)} = \operatorname{Re} \int_{m}^{\infty} d\omega \, e^{-i\omega(t-t')} \left[u_{p\alpha}(x) \, u_{p\alpha}^{*}(x') + \sum_{l=1}^{\infty} \sum_{m=-l}^{l} u_{plm}(x) \, u_{plm}^{*}(x') \right].$$

 $\alpha = \infty =$ no interaction.

$$D_{\infty}^{(1)}(x, x') = \text{Re} \int_{m}^{\infty} d\omega \, e^{-i\omega(t - t')} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} u_{\omega l m}(x) \, u_{\omega l m}^{*}(x') \,.$$

Renormalized Hadamard function: $D_{\mathrm{ren}}^{(1)} = D_{\alpha}^{(1)} - D_{\infty}^{(1)}$.

$$D_{\text{ren}}^{(1)}(x,x') = \operatorname{Re} \int_{m}^{\infty} d\omega \, e^{-i\omega(t-t')} \left[u_{p\alpha}(x) \, u_{p\alpha}^*(x') - u_{p\infty}(x) \, u_{p\infty}^*(x') \right].$$

Only s-wave contributes!

$$D_{\text{ren}}^{(1)}(x, x') = \frac{1}{4\pi^{2}rr'} \int_{0}^{\infty} dz \, z \, \frac{\cos\left[\sqrt{(4\pi\alpha z)^{2} + m^{2}(t - t')}\right]}{\sqrt{z^{2} + (m/4\pi\alpha)^{2}(1 + z^{2})}} \times \left(\sin\left[4\pi\alpha z(r + r')\right] + z \, \cos\left[4\pi\alpha z(r + r')\right]\right) = 0$$

$\langle \phi^2(x) \rangle_{\rm ren}$

Vacuum field-square: $\langle \phi^2(x) \rangle_{\rm ren} = D_{\alpha}^{(1)}(x,x) = \frac{1}{4\pi^2 r^2} \, \mathcal{J}\Big(8\pi\alpha r, \frac{m}{4\pi\alpha}\Big)$ Two-arguments function:

$$\mathcal{J}(\beta, a) \equiv \int_{0}^{\infty} dz \, \frac{1}{1 + z^2} \, \frac{z}{\sqrt{z^2 + a^2}} \Big(\sin \beta z + z \cos \beta z \Big)$$

Lengthy parameters:

- ▶ the Compton length $l_c = m^{-1}$
- ▶ the scattering length $d_s = (4\pi\alpha)^{-1}$

$$\langle \phi^2(x) \rangle_{\rm ren} = \frac{1}{4\pi^2 r^2} \mathcal{J}\left(\frac{2r}{d_s}, \frac{d_s}{l_c}\right).$$

- i) for fixed m and d_s , $\langle \phi^2 \rangle_{\rm ren}$ monotonically decreases with growth of r, to $\langle \phi^2(r \to \infty) \rangle_{\rm ren} = 0$;
- ii) for fixed r and d_s , $\langle \phi^2 \rangle_{\rm ren}$ monotonically decreases as m grows;
- iii) for fixed r and m, $\langle \phi^2 \rangle_{\rm ren}$ monotonically decreases as α grows (d_s falls), since from physical reasons the limit $\alpha \to +\infty$ implies the absence of polarization effect.

Basic integral

$$\mathcal{J}(\beta, a) \equiv \int_{0}^{3\pi} dz \, \frac{1}{1 + z^2} \, \frac{z}{\sqrt{z^2 + a^2}} \left(\sin \beta z + z \cos \beta z \right).$$

Introduce cosine- and sine-ints:

$$\mathcal{J}_c := \int_0^\infty dz \, \frac{\cos \beta z}{1 + z^2} \, \frac{1}{\sqrt{z^2 + a^2}} \,, \qquad \mathcal{J}_s := \int_0^\infty dz \, \frac{\sin \beta z}{1 + z^2} \, \frac{z}{\sqrt{z^2 + a^2}} = -\frac{\partial \mathcal{J}_c(\beta, a)}{\partial \beta}$$

$$\mathcal{J} = K_0(\beta a) + \mathcal{J}_s - \mathcal{J}_c$$

Particular case: a = 1:

$$\mathcal{J}(\beta, 1) = (1 + \beta)K_0(\beta) - \beta K_1(\beta)$$

a > 1:

$$\mathcal{J} = K_0(\beta a) - e^{\beta} \int_{\beta}^{\infty} dt \, e^{-t} \, K_0(at)$$

a < 1: works as well

More economy form:
$$\mathcal{J}(\beta,a) = a e^{\beta} \int\limits_{\beta}^{\infty} dt \, e^{-t} \, K_1(at)$$
 .

Asymptotics of basic integral

Base of separation: $a\beta$ vs. 1

Typical	Characteristic limiting values of eta				
variants of values of a	$\beta \ll a^{-1} \ll 1$	$\beta \ll 1$	$eta \sim 1$	$\beta\gg 1$	$\beta \gg a^{-1} \gg 1$
a = 0	_	$\ln\frac{1}{\beta}-\gamma$	$\mathrm{e}^{eta}E_{1}(eta)$	$1/\beta$	_
$a \ll 1$	_	$\left(\ln\frac{1}{\beta} - \gamma\right)(1+\beta) + \beta$	$e^{\beta} E_1(\beta) - \frac{\beta+1}{2} a^2 \ln \frac{2}{a}$	$aK_1(a\beta)$	$aK_0(a\beta)$
a < 1	_	$\ln\frac{2}{a\beta} - \gamma - \frac{\operatorname{Arch} a^{-1}}{\sqrt{1 - a^2}}$	$a e^{eta} \int_{eta}^{\infty} dt e^{-t} K_1(at)$	$\sqrt{\frac{\pi a}{2\beta}} \frac{e^{-a\beta}}{a+1}$	_
a = 1	_	β	$(1+\beta)K_0(\beta) - \beta K_1(\beta)$	$\sqrt{\frac{\pi}{8\beta}} e^{-\beta}$	_
a > 1	_	$\ln \frac{2}{a\beta} - \gamma - \frac{\arccos a^{-1}}{\sqrt{a^2 - 1}}$	$a e^{eta} \int_{eta}^{\infty} dt e^{-t} K_1(at)$	$\sqrt{\frac{\pi a}{2\beta}} \frac{\mathrm{e}^{-a\beta}}{a+1}$	_
$a\gg 1$	$\ln \frac{2}{a\beta} - \gamma - \frac{\pi}{2a}$	$K_0(aeta)$	$\sqrt{\frac{\pi}{2a\beta}} e^{-a\beta}$	$\sqrt{\frac{\pi}{2a\beta}} e^{-a\beta}$	_

Renormalized field-square in doubly logarithmic scale:

Figure: for massless field (green dashed), for $l_c/d_s=10$ (black dotted), $l_c/d_s=1$ (red solid) and $l_c/d_s=0.1$ (blue dashdotted). The value $r=l_c$ is marked by dash of corresponding color. The value $r=d_s$ corresponds to the ordinate-axis for each curve.

Dependence upon d_s :

Figure: $\langle\phi^2\rangle$, normalized by $\langle\phi^2\rangle_{\rm max}$ as a function of d_s (in units $l_c=1$): for $r/l_c=0.01$ (green dashdotted), for $r/l_c=0.1$ (red dashed), r/l=1 (blue solid) and $r/l_c=10$ (black dotted). The values $d_s^{(p=0.95)}$ are marked by vertical dash lines of corresponding color.

Renormalized energy-momentum tensor

$$\langle T_{\nu}^{\nu} \rangle_{\text{ren}} = \frac{1}{4\pi^{2}r^{4}} \left[A_{\nu,-1} \mathcal{J}\left(\frac{2r}{d_{s}}, \frac{d_{s}}{l_{c}}\right) + A_{\nu,0} K_{0}\left(\frac{2r}{l_{c}}\right) + A_{\nu,1} \hat{K}_{1}\left(\frac{2r}{l_{c}}\right) \right]$$

(no summation over ν)

Index ν	Index σ			
of the diagonal component	-1	0	1	
t	$\left(2\xi - \frac{1}{2}\right)\left(\frac{2r}{d_s} - 1\right) + \frac{r^2}{l_c^2} - 4\xi\frac{r^2}{d_s^2}$	$-4\xi\frac{r^2}{l_c^2}$	$\frac{1}{2} + \xi \left(\frac{2r}{d_s} - 3\right)$	
r	$4\xi - \frac{1}{2} + (1 - 4\xi) \frac{r}{d_s}$	0	$2\xi-\frac{1}{2}$	
heta,arphi	$\frac{1}{2} - 4\xi + (6\xi - 1)\frac{r}{d_s} + (1 - 4\xi)\frac{r^2}{d_s^2}$	$(1-4\xi)\frac{r^2}{l_c^2}$	$\frac{3}{4} - 4\xi + \left(2\xi - \frac{1}{2}\right)\frac{r}{d_s}$	
Sp	$(1-6\xi)\Big(1-\frac{2r}{d_s}+\frac{2r^2}{d_s^2}\Big)+\frac{r^2}{l_c^2}$	$2(1-6\xi)\frac{r^2}{l_c^2}$	$(1-6\xi)\Big(\frac{3}{2}-\frac{r}{d_s}\Big)$	

Table: Coefficients $A_{\nu,\sigma}$ for the EMT and for its trace

Renormalized energy-momentum tensor:

Figure: $\langle T_{00} \rangle$ in doubly logarithmic scale (minimal coupling): for massless field (green dashed), for $l_c/d_s=10$ (black dotted), $l_c/d_s=1$ (red solid) and $l_c/d_s=0.1$ (blue dashdotted)

Conclusions

Renormalization: $\epsilon \to 0^+$:

$$\frac{1}{\lambda_{\rm ren}} = \frac{1}{\lambda} + \frac{1}{4\pi\epsilon} \,,$$

$$\lambda_{\rm ren} := -\alpha^{-1}$$

Resolving bare coupling:

$$\lambda = \lim_{\varepsilon \to 0^+} \frac{\lambda_{\rm ren}}{1 - \frac{\lambda_{\rm ren}}{4\pi\varepsilon}} = \left\{ \begin{array}{l} 0, & \lambda_{\rm ren} = 0 \text{ (no interaction);} \\ 0, & \lambda_{\rm ren} \neq 0 \text{ (infinitesimal).} \end{array} \right.$$

- Single-parametric SAE yields the natural answer in terms of finite quantity α (or d_s)
- Vacuum polarization of massive scalar field is computed and has reasonable asymptotic cases
- ullet Presumably, it provides the rule how to work with (3+1)-dimensional pointlike attraction and with (2+1)-dimensional zero-range interaction
- The bare coupling may be directly renormalized what is equivalent here to SAE-concept

Acknowledgment for attention

Thank you!

