

# Cosmological Constant Suppression in Non-Stationary Scalar Covariant State

Asya Aynbund 1, Valery V. Kiselev 1,2

aynbund.asya@phystech.edu, kiselev.vv@phystech.edu

<sup>1</sup> Moscow Institute of Physics and Technology (MIPT)

<sup>2</sup> Institute of High Energy Physics (IHEP- NRC KI)

22nd Lomonosov Conference on Elementary Particle Physics
August 21-27, 2025
Moscow State University

August 26, 2025

#### Sections

- Introduction
- Cosmological Constant Problem
- Dark Energy Mechanism
- Cut-off Scale & Inflation
- Conclusion

### Introduction

- Cosmological constant problem: according to the data  $10^{-3}$  eV, based on estimates in theoretical models  $10^{18}$  GeV;
- No theoretical models with vacuum energy density suppression ⇒ Zeldovich: the cosmological constant ↔ density of vacuum energy generated by ZPM;
- 4D isotopic model in contrast to 3D isotropic

#### Accelerating expansion of the universe: $\Lambda$ CDM & $w_0w_a$ CDM





State parameter: 
$$w = \frac{p}{\rho} \approx -1$$

• 
$$\rho \sim \Lambda^4$$

ΛCDM:

$$\Omega_m = 0.3095 \pm 0.0069, \quad w = -0.997 \pm 0.025$$

• 
$$w_0 w_a CDM$$
:  $w = w_0 + (1 - a)w_a$ 

$$w_0 = -0.827 \pm 0.063, \quad w_a = -0.75^{+0.29}_{-0.25}$$

# Scale $\Lambda_{DE} = 10^{-3} \text{eV}$

- Model assumptions for considering:
  - Nothing (or emptiness): classical limit

$$T_{\mu\nu}^{\text{emp.}} \mid_{\text{cl}} = 0 \quad \leftrightarrow \quad T_{\mu\nu}^{\text{cl.}} = \text{tr}\left(\hat{\rho}\hat{T}_{\mu\nu}\right)$$

- Crucial: quantum fluctuations
- Non-stationary universe ⇒ no pure vacuum
- Possible invariant vacuum:

$$\operatorname{tr}\left(\hat{\rho}\hat{T}_{\mu\nu}\right)_{\mathrm{inv.}} = W_{\mathrm{vac}} \cdot \langle \operatorname{vac} | \hat{T}_{\mu\nu} | \operatorname{vac} \rangle + \operatorname{tr}_{\mathrm{non-vac}}\left(\hat{\rho}\hat{T}_{\mu\nu}\right) = W_{\mathrm{vac}} \cdot \rho_{\mathrm{vac}}^{\mathrm{bare}} g_{\mu\nu} + T_{\mu\nu} \left[\Phi_{\mathrm{cl.}}\right]$$

$$\Lambda \sim 10^{16} \mathrm{GeV}, \rho_{\mathrm{vac}}^{\mathrm{bare}} \sim \Lambda^{4} \qquad W_{\mathrm{vac}} \ll 1$$

$$n_{\mathrm{eff}} \sim \frac{\tilde{m}_{\mathrm{Pl}}}{\Lambda} \quad W_{\mathrm{vac}} = \mathrm{e}^{-n_{\mathrm{eff}}} \quad n_{\mathrm{eff}} \sim 250$$

• Two fundamental scales in inflation: Planck mass  $\tilde{m}_{\mathrm{Pl}}$  and inflationary plateau height  $V_C$ 

## Dark energy and $n_{\rm eff}$

• Non-separable  $|vac\rangle \Rightarrow$  non-invariant  $T_{\mu\nu}$ :

$$\rho_{\mathrm{DE}} = W_{\mathrm{DE}} \cdot \langle \mathrm{vac} \, | \, \hat{T}_{00} \, | \, \mathrm{vac} \rangle \cdot g^{00} = W_{\mathrm{DE}} \cdot \rho_{\mathrm{vac}}^{\mathrm{bare}}, \quad p_{\mathrm{DE}} = w_{\mathrm{DE}} \cdot \rho_{\mathrm{DE}}$$

Using the conservation law in the expanding Universe:

$$\dot{\rho}_{\mathrm{DE}} + 3H\left(\rho_{\mathrm{DE}} + p_{\mathrm{DE}}\right) = 0 \Rightarrow \dot{W}_{\mathrm{DE}} \cdot \rho_{\mathrm{vac}}^{\mathrm{bare}} + 3H\left(1 + w_{\mathrm{DE}}\right) W_{\mathrm{DE}} \cdot \rho_{\mathrm{vac}}^{\mathrm{bare}} = 0$$

• Under  $H \equiv \dot{a}/a$  and introducing the e-folding in terms of scale factor  $a(t) - N \equiv \ln a(t)$ :

$$w_{\rm DE} = -1 - \frac{1}{3} \left( \ln W_{\rm DE} \right)^{'}$$

• In vicinity of N = 0, the effective number of quanta

$$n_{\text{eff}}(N) \approx n_{\text{eff}} + n' \cdot N + \frac{1}{2}n'' \cdot N^2$$

While

$$W_{\rm DE} = e^{-n_{\rm eff}(N)} \Rightarrow w_{\rm DE} \approx -1 + \frac{1}{3} (n' - n'' \cdot (1 - a))$$

Empirical data correspond to approximate constraints

$$0.3 < n' < 0.75$$
,  $1.7 < n'' < 3$ 

#### Action with cut-off

• Action of real scalar field  $\phi(x)$ :

$$S = \int d^4x \frac{1}{2} \left( \phi(x) \left( -\partial_{\mu} \partial^{\mu} \phi(x) \right) - m^2 \phi^2(x) \right)$$

- Applying:
  - √ Fourier back-and-forth
  - ✓ Wick rotation  $p_0 = ip_4$  with  $p^2 = -p_E^2$  and back:  $ip_E = k$
  - $\checkmark$  4D isotropic solutions with a cut-off alike  $\Lambda$
- we arrive to:

$$S_{\rm 4D} = \frac{1}{4\pi} \frac{\left\langle p_{\rm E}^3 \right\rangle_{\Lambda}}{\Lambda^6} \int d\tau \frac{1}{2} \phi(\tau) \left( -\frac{{\rm d}^2}{{\rm d}\tau^2} - m^2 \right) \phi(\tau)$$

- New Cut-off Scale  $\Lambda$ :  $\frac{1}{4\pi} \frac{\left\langle p_{\rm E}^3 \right\rangle_{\Lambda}}{\Lambda^6} \mapsto \frac{1}{\Lambda^3}$
- 4D Isotropic Cut-off Implementation:

$$S_{4D} = \frac{1}{\Lambda^3} \int d\tau \frac{1}{2} \left( \dot{\phi}^2 - m^2 \phi^2 \right)$$

#### Non-stationary coherent state: interaction with gravity

• The action in the Jordan frame:

$$S_{\text{int}} + S_{\text{EH}} = -\frac{1}{2}\tilde{m}_{\text{Pl}}^2 \int d^4x \sqrt{-g}R \cdot \left(1 + \frac{\varphi}{\Lambda_{\text{int}}}\right)$$

• The conformal transformation to the Einstein frame:

$$\Omega(\varphi) = 1 + \frac{\varphi}{\Lambda_{\text{int}}}$$

$$g_{\mu\nu} \mapsto \frac{1}{\Omega(\varphi)} g_{\mu\nu}$$

• The canonical form under the field substitution:

$$\Phi = \tilde{m}_{\rm Pl} \sqrt{3/2} \ln \left( 1 + \frac{\varphi}{\Lambda_{\rm int}} \right)$$

Φ

ullet At the potential of free scalar field in the Jordan frame the potential of  $\Phi$  equals:

$$V_E = \frac{1}{2} m^2 \Lambda_{\text{int}}^2 \left( 1 - \exp\left( -\frac{\Phi}{\tilde{m}_{\text{Pl}}} \cdot \sqrt{2/3} \right) \right)^2$$

It has the plateau and inflaton mass at the bottom:

$$V_C = \frac{1}{2}m^2\Lambda_{\text{int}}^2 \quad m_{\text{inf}}^2 = \frac{2}{3}m^2 \cdot \frac{\Lambda_{\text{int}}^2}{\bar{m}_{\text{Pl}}}$$

# Numerical estimates

 The contribution of vacuum state to the average stress-energy tensor is suppressed as:

$$\rho_{\rm vac} \sim (10^{-3} \, {\rm eV})^4$$
,  $\Lambda \sim 10^{16} \, {\rm GeV}$ .

• Then  $\langle n \rangle \sim 250 \Rightarrow$  the energy of initial coherent state in the reference volume:

$$\langle E \rangle \sim \langle n \rangle m \sim \tilde{m}_{\rm Pl}$$
.

 Two energy scales the reduced Planckean mass and the scale of inflation plateau.

#### Conclusion

- We have shown the bare value of ZP can be suppressed under the following conditions (+covariant formalism):
  - the non-stationary coherent state of scalar field in the expanding universe
  - the finite volume
  - natural estimates for the cut-off scale
- The model involves two scales of energy
- Detailed results are provided in arXiv preprint 2411.16181, 2501.05274 (both to be submitted)

# Thank you for your attention!

## Scalar field and spatial-temporal covariance

Suppose true spatial-temporal structure (Wick rotation, no poles):

$$\langle \operatorname{vac} | T_{\mu\nu}(x) | \operatorname{vac} \rangle = \int \frac{\mathrm{d}^4 p_E}{(2\pi)^4} \, \frac{1}{p_F^2 + m^2} \Big( p_\mu^E p_\nu^E - \frac{1}{2} \, g_{\mu\nu}^E (p_E^2 + m^2) \Big)$$

Replacement:

$$p_{\mu}^E p_{\nu}^E \mapsto \frac{1}{4} g_{\mu\nu}^E p_E^2.$$

• Therefore:

$$\langle \operatorname{vac} | T_{\mu\nu}(x) | \operatorname{vac} \rangle = \frac{1}{4} g_{\mu\nu} \int \frac{\mathrm{d}^4 p_E}{(2\pi)^4} \left( 1 + \frac{m^2}{p_E^2 + m^2} \right) \Rightarrow w_{\text{vac}} = -1$$

• True structure of spatial-temporal quantum fluctuations in the vacuum supposes the covariant four-dimensional formulation.

# Finite volume and spatial structure

The scalar field in a finite volume:

$$S = V_{[3]} \int dt \, \frac{1}{2} \left( (\partial_t \phi(t))^2 - m^2 \phi^2(t) \right)$$

Using oscillator coordinate, mass, frequency and scale of energy:

$$\langle 0 | m^2 \phi^2 | 0 \rangle = \langle 0 | (\partial_t \phi)^2 | 0 \rangle = \frac{1}{2} \frac{m}{V_{[3]}},$$

• So, the energy density equals:

$$\langle 0 | T_{00} | 0 \rangle = \frac{1}{2} \langle 0 | (\partial_t \phi)^2 + m^2 \phi^2 | 0 \rangle = \frac{1}{2} \frac{m}{V_{[3]}},$$

• while the pressure is given by:

$$p = \frac{1}{2} \langle 0 | (\partial_t \phi)^2 - m^2 \phi^2 | 0 \rangle = 0.$$

 Does not correspond to the vacuum: the parameter fits the dust, i.e. particles with zeroth pressure

#### Covariant model

Action for the field in the finite volume in the covariant 4d form:

$$S_{\Lambda} = \frac{1}{\Lambda^3} \int d\tau \frac{1}{2} \Big( (\partial_{\tau} \phi)^2 \Big\langle \partial_{\mu} \tau \partial_{\nu} \tau \Big\rangle g^{\mu\nu} - m^2 \phi^2 \Big),$$

the covariant ST-structure in the model is defined by:

$$\left\langle \partial_{\mu} \tau \partial_{\nu} \tau \right\rangle = \frac{1}{4} g_{\mu\nu}, \quad \left\langle (\partial_{\lambda} \tau)^2 \right\rangle = 1$$

Analogously for the state with no quanta of oscillator:

$$\langle \operatorname{vac} | T_{\mu\nu}^{\Lambda} | \operatorname{vac} \rangle = g_{\mu\nu} \langle \operatorname{vac} | \left( -\frac{1}{4} (\partial_{\tau} \phi)^2 + \frac{1}{2} m^2 \phi^2 \right) | \operatorname{vac} \rangle = g_{\mu\nu} \frac{1}{8} m \Lambda^3.$$

and the bare value of energy density:

$$\rho_{\text{vac}}^{\text{bare}} = \langle \text{vac} | T_{00}^{\Lambda} | \text{vac} \rangle = \frac{1}{8} m \Lambda^3 > 0.$$

# Non-stationary coherent state

 The contribution of vacuum state to the average stress-energy tensor is suppressed as:

$$\langle T_{\mu\nu}^{\Lambda} \rangle_{\text{vac}} = \langle \text{vac} | T_{\mu\nu}^{\Lambda} | \text{vac} \rangle \cdot e^{-\langle n \rangle} = \rho_{\text{vac}}^{\text{bare}} \cdot e^{-\langle n \rangle} = \frac{1}{8} m \Lambda^3 \cdot e^{-\langle n \rangle},$$

the energy of coherent state in the final volume:

$$\langle E \rangle = \omega_{\rm osc} (\langle n \rangle + \frac{1}{2}) = m (\langle n \rangle + \frac{1}{2}),$$

the same quantity in terms of energy density within a finite volume:

$$\langle E \rangle = V_{[3]} \rho_{\text{vac}}^{\text{bare}} \left( \langle n \rangle + \frac{1}{2} \right) \cdot 2 = V_{[3]} \frac{1}{4} m \Lambda^3 \left( \langle n \rangle + \frac{1}{2} \right),$$

Therefore, the reference volume:

$$V_{[3]} = \frac{4}{\Lambda^3}$$