

Dark sector at BESIII

Vindhyawasini Prasad

(On behalf of the BESIII Collaboration)

Email: vindy@jlu.edu.cn

College of Physics Jilin University, Changchun, China

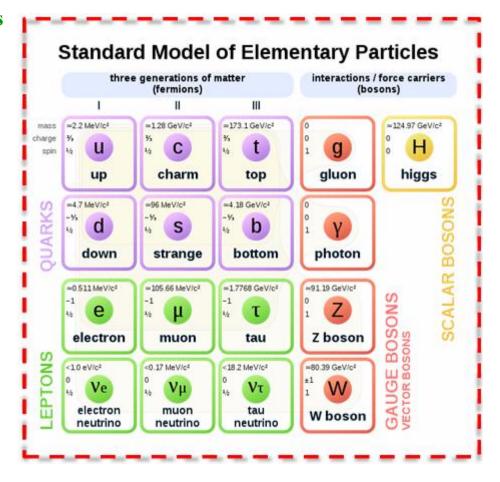
Outline

- ✓ Motivation
- ✓ BESIII experiment
- ✓ Status of Dark sector searches at BESIII
 - Search for a light Higgs boson A^0 in radiative J/ψ decay
 - Search for an Axion-like particle
 - Dark photon (massive and massless)
 - Search for invisible decays of K_S^0 meson
 - Dark baryon
 - Search for invisible muon philic scalar X_0 or vector X_1 via $J/\psi \to \mu^+\mu^-+$ invisible
- ✓ Summary

Motivation

- **Standard Model (SM) is incredibly successful, it is tested by experiments**
- However, it can't be quantified as a theory of everything

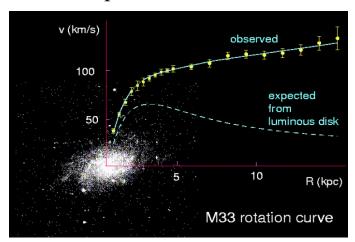
facing some tensions:

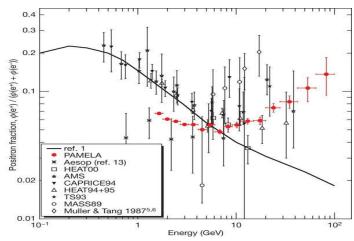

Naturalness and stability, g-2, W mass, R_K, R_D, R_{D*},

Can not explain:

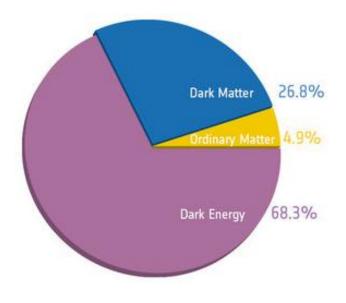
Existence & mechanism of dark matter and dark energy

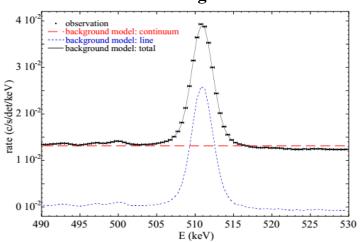
Baryon asymmetry of the universe


Neutrino masses and oscillations, hierarchy

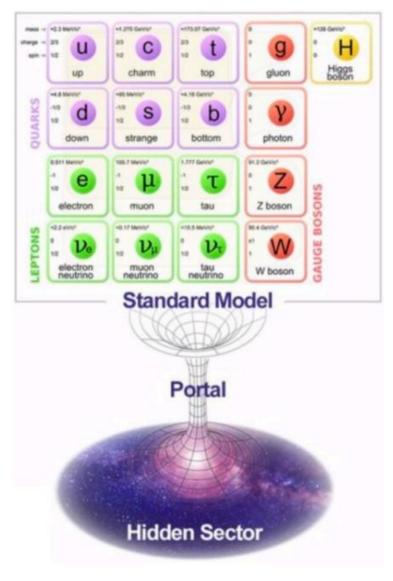

Real opportunity to search for new physics beyond the Standard Model

Motivation


- **Standard Model (SM) is incredibly successful but not complete!**
 - ☐ Extensions of the SM needed to solve several outstanding issues, including the missing description of Dark Matter (DM)
 - Why DM?
 - Amounts 27% of the total matter density of the universe
 - Not interact with strong and electromagnetic interactions, it presence so far can be inferred via the gravitational effects only.
 - Explain the features of recent astrophysical observations


arXiv:astro-ph/0403324

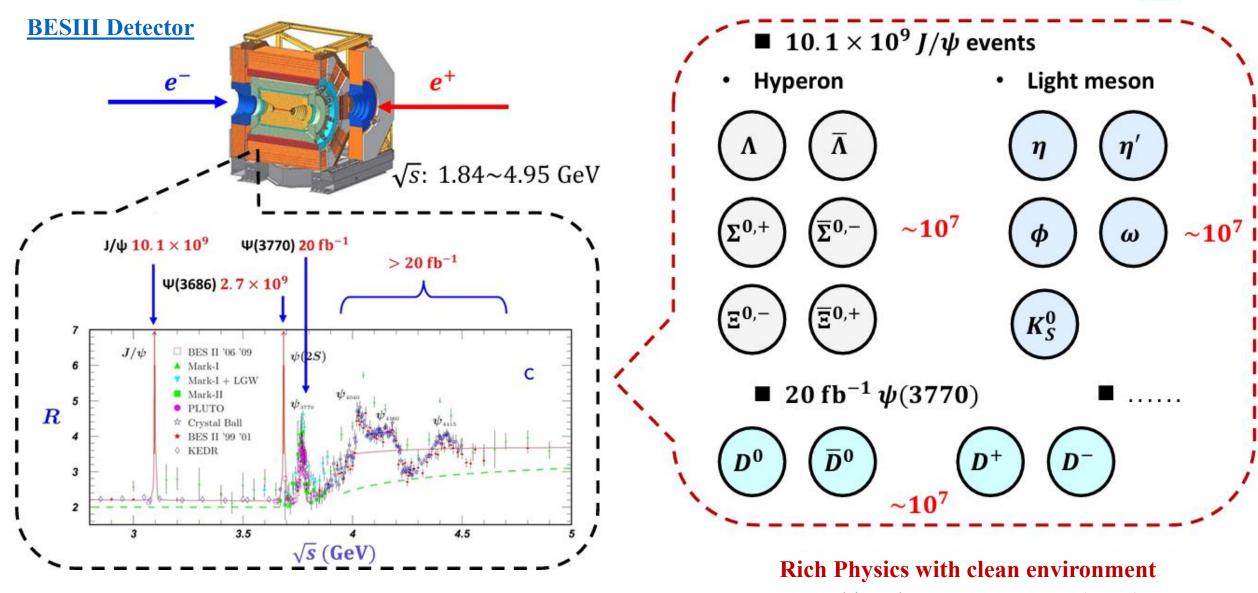
PAMELA: Positron fraction O Adriani et al., Nature 458 (2009) 607



SPI/Integral

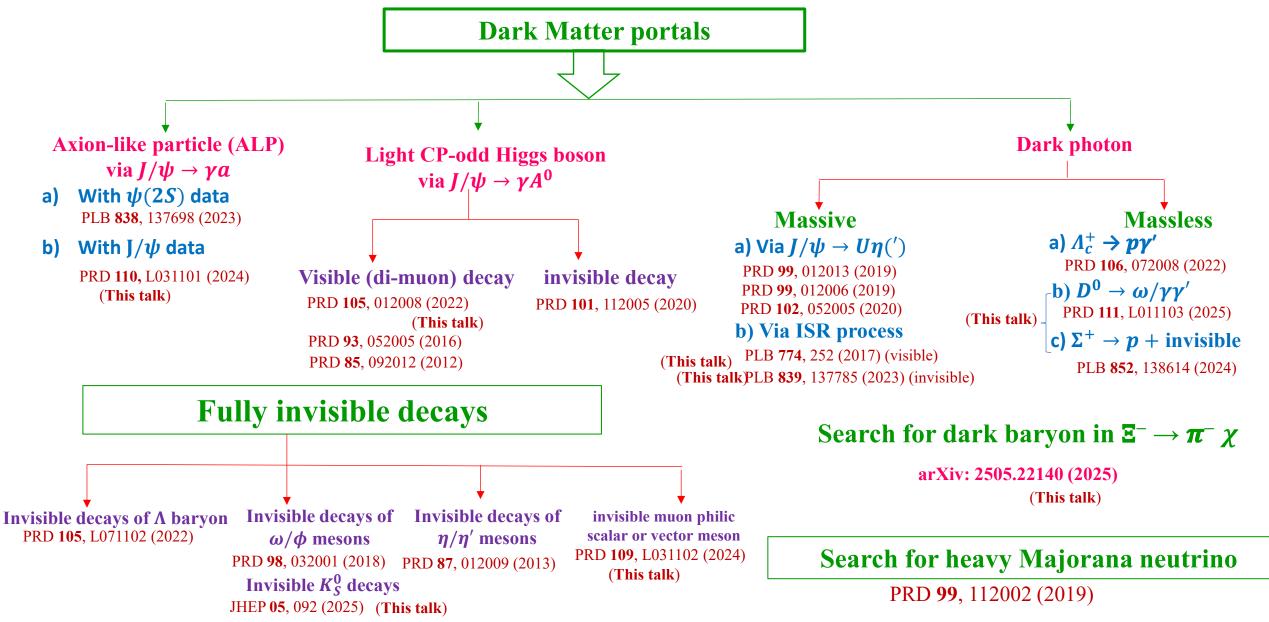
P. Jean et al., A&A 407, L-55-L58 (2003)

Coupling of DM with Standard Model


- Dark matter has not seen yet in particle physics experiments.
 - SM can't explain DM \Longrightarrow Extend to the SM to include Dark matter
 - One of the simplest models is "DM hidden sector" that allows the coupling between DM and SM particles via the so called "portals"

R. Essig et al., arXiv:1311.0029 (2013)

$$\mathcal{L} \supset \left\{ \begin{array}{ll} -\frac{\varepsilon}{2\cos\theta_W} B_{\mu\nu} F'^{\mu\nu} \,, & \text{vector portal} \\ (\mu\phi + \lambda\phi^2) H^\dagger H \,, & \text{Higgs portal} \\ y_n L H N, & \text{neutrino portal} \\ \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}, & \text{axion portal} \\ \end{array} \right. \quad \begin{array}{ll} \textbf{A' kinetic mixing with } \gamma, \textbf{Z} \\ \textbf{Dark Higgs (mixes with SM Higgs)} \\ \textbf{Sterile neutrino} \\ \textbf{Axion, coupling to DM} \end{array}$$


• Can be accessible by high intensity e⁺e⁻ collider experiments, such as BESIII experiment, if their masses are a few GeV

BESIII Experiment

Chin. Phys. C 44, 040001 (2020)

Status of Dark sector searches at BESIII

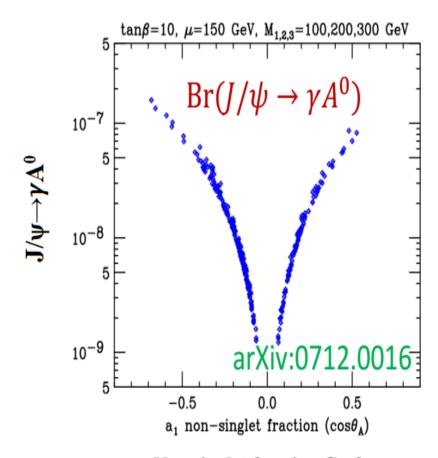
Light Higgs boson A⁰ search

PRD 105, 012008 (2022)

- A light Higgs boson is predicted by many extensions of Standard Model, such as Next-to-Minimal Supersymmetric Standard Model (NMSSM).
 - ➤ NMSSM contains a total of three CP-even, two CP-odd and two charged Higgs bosons.
 - \triangleright The lighter state of the A^0 is defined as:

➤ Coupling of fermions and the CP-odd Higgs A⁰

$$L_{\text{int}}^{f\overline{f}} = -\cos\theta_A \tan\beta \frac{m_f}{v} A^0 \overline{d}(i\gamma_5) d, \quad d = d, \, s, \, b, \quad e, \, \mu, \, \tau$$

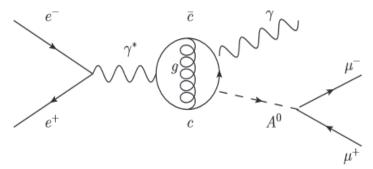

$$L_{\text{int}}^{f\bar{f}} = -\cos\theta_A \cot\beta \frac{m_f}{v} A^0 \bar{u}(i\gamma_5) u, \quad u = u, \quad \boldsymbol{c}, \quad t, \quad v_e, \quad v_\mu, \quad v_\tau$$

$$\tan \beta = \frac{v_u}{v_v}$$
 Ratio of the VEVs of the up and down-types of Higgs doublets

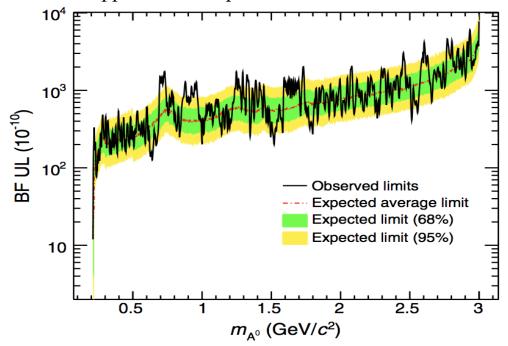
E. Fullana et. al, Phys. Lett. B 653, 67 (2007)

 \triangleright Can be detectable via radiative decays of J/ ψ and $\Upsilon(1S)$

[Phys. Rev. Lett. **39**, 1304 (1977)]

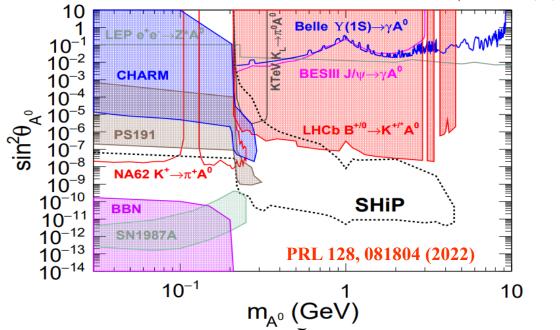


Non singlet fraction $Cos\theta_A$


Light Higgs boson A^0 search in radiative J/ψ decay

Expected $B(J/\psi \to \gamma A^0) \sim 10^{-9} - 10^{-7}$ [PRD 76, 051105 (2007)]

PRD 105, 012008 (2022)


No evidence of A⁰ production is found and set 90% confidence level upper limits on product BFs.

 \triangleright Use 9 billion J/ψ events collected by BESIII experiment to perform this study.

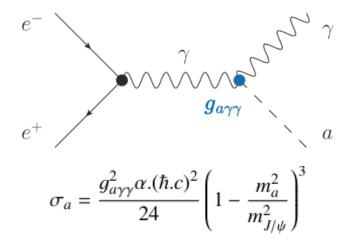
Mixing angle $(sin\theta_{A^0})$

$$\frac{\mathcal{B}(\Upsilon(1S) \to \gamma A^0)\mathcal{B}(A^0 \to \text{hadrons})}{\mathcal{B}(\Upsilon(1S) \to \ell^+\ell^-)} = \sin^2\theta_{A^0} \frac{G_F m_b^2}{\sqrt{2}\pi\alpha} \sqrt{(1 - \frac{m_{A^0}^2}{m_{\Upsilon(1S)}^2})}$$

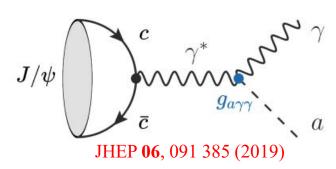
Our result in the low-mass region is better than recent **BELLE**

measurement

Search for an Axion-like particle


Phys. Lett. B 753, 482 (2016)

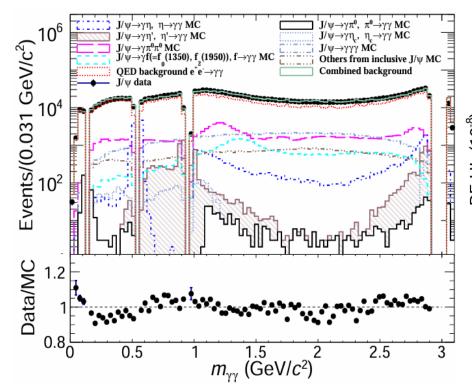
An Axion-like particle (ALP), a


Phys. Rev. D 110, L031101 (2024)

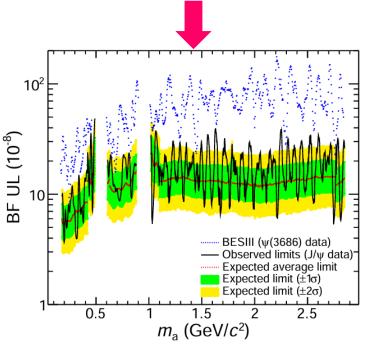
- is a pseudo-scalar particle
- introduced by the spontaneous breaking of Peccei-Quinn symmetry to solve the strong CP problem of the QCD Phys. Rev. Lett. 40, 223 (1978); Phys. Rev. Lett. 40, 279 (1978) Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977)
- Predicted by many models beyond the SM and proposed to be a cold DM candidate.
- ALP production at e⁺e⁻ colliders
 - ALP-Strahlung process

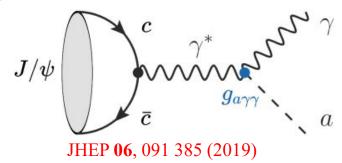
Phys. Rev. D 52, 1755 (1995)

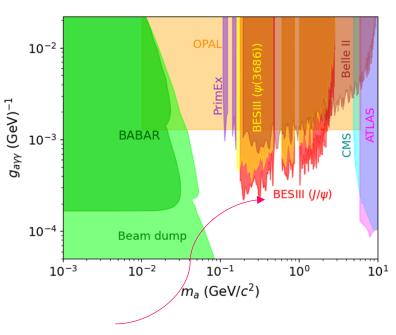
Radiative decay process



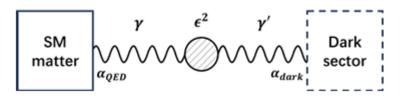
$$\mathcal{B}(J/\psi \to \gamma a) = \frac{m_{J/\psi}^2}{32\pi\alpha} g_{a\gamma\gamma}^2 \left(1 - \frac{m_a^2}{m_{J/\psi}^2}\right)^3 \mathcal{B}(J/\psi \to e^+e^-)$$


Search for ALP via radiative J/ψ decays at BESIII

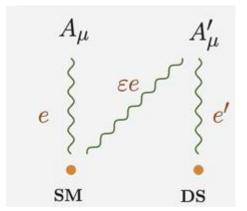

Phys. Rev. D 110, L031101 (2024


- $10^{10} J/\psi$ events
- Extract signal from $M_{\gamma\gamma}$ distribution
- Maximum signal significance: $< 3\sigma$

• UL on the BF of $\mathcal{B}(J/\psi \to \gamma a) \times \mathcal{B}(a \to \gamma \gamma)$ (3. 6~53. 1) × 10⁻⁸@ .95% CL.

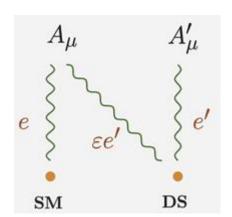


New stringent constraints on ALP-photon coupling for $0.18 \le m_a \le 2.85 \text{ GeV}$


Dark photon

Simplest extension of the SM \Rightarrow An extra Abelian gauge group, $U(1)_D \Rightarrow$ dark photon

Massive dark photon

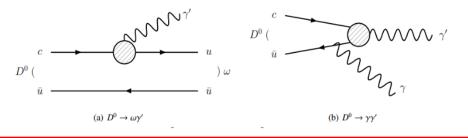

arises when the symmetry of the additional Abelian gauge group is spontaneously broken

- Massive dark photon
- Coupling with SM fermion
- Strong constraint

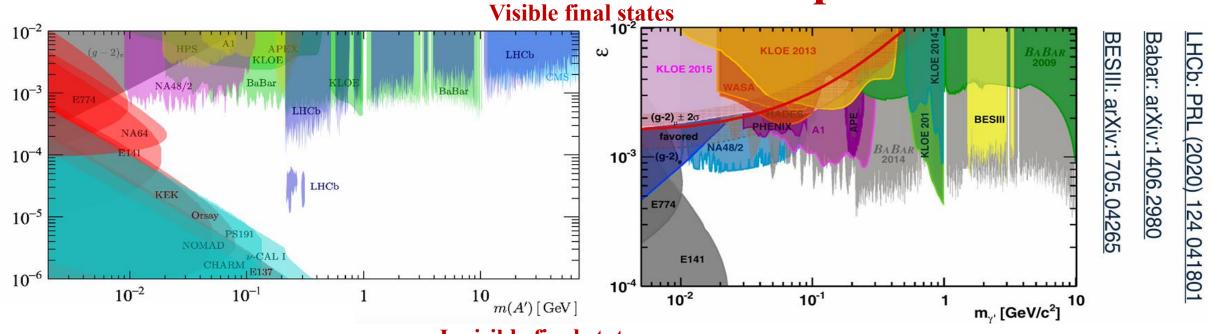
Massless dark photon

Symmetry remains unbroken

- B. Batell, et al, PRD **79**, 115008 (2009);
- R. Essig, et al, PRD **80**, 015003 (2009)

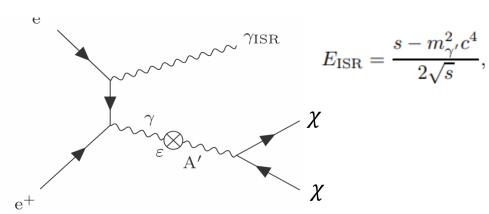

- Massless dark photon
- No direct coupling with SM fermion
- Less constraint
- Also, important role in dark sector

A dimension-six operator has been proposed to provide a connection between SM fermions and the massless dark photon

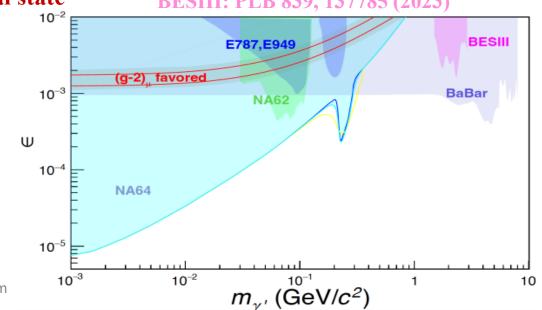

$$\mathcal{L}_{ ext{NP}} = rac{1}{\Lambda_{ ext{NP}}^2} (C_{jk}^U ar{q}_j \sigma^{\mu
u} u_k ilde{H} + C_{jk}^D ar{q}_j \sigma^{\mu
u} d_k H + C_{jk}^L ar{l}_j \sigma^{\mu
u} e_k H + ext{H.c.}) F'_{\mu
u}$$

- Naturally allow the FCNC coupling
- Less background and higher sensitivity

PRL **94**, 151802 (2005)



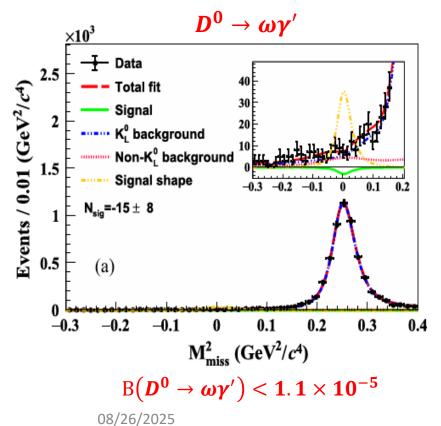
Current status of massive dark photon searches

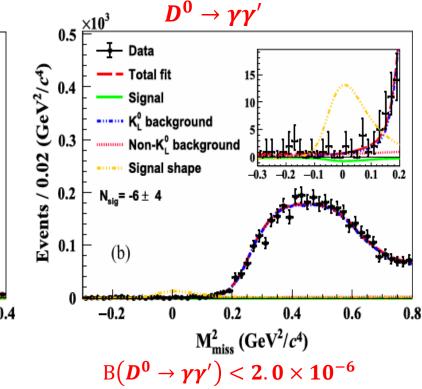


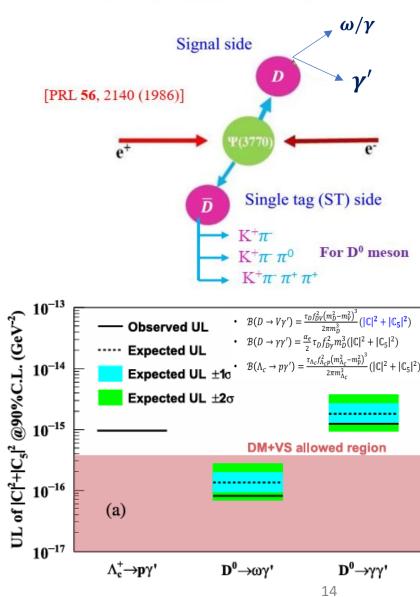
Invisible final state

[: PLB 839, 137785 (2023)

BaBar: Phys. Rev. Lett. 119, 131804 (2017)




Search for a massless dark photon in $D^0 \to \omega/\gamma\gamma'$


PRD 111, L011103 (2025)

- Search is based on 7.9 fb⁻¹ $\psi(3770)$ data using a double tag (DT) technique
- The signals of the massless dark photon are extracted from a fit on the distribution of missing mass square

$$M_{\rm miss}^2 = |p_{\rm c.m.s.} - p_{\bar{D}^0} - p_{\omega(\gamma)}|^2/c^4$$

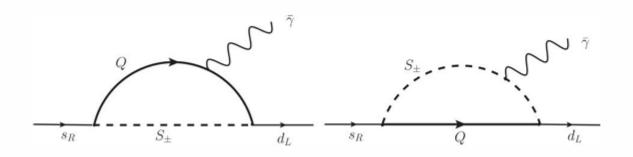
$\Sigma^+ \rightarrow p$ + invisible and QCD axion

PLB 852, 138614 (2024)

• $s \rightarrow d\nu\bar{\nu}$ is a FCNC process and highly suppressed by GIM mechanism

PRD 2, 1285 (1970)

• BF $< 10^{-11}$

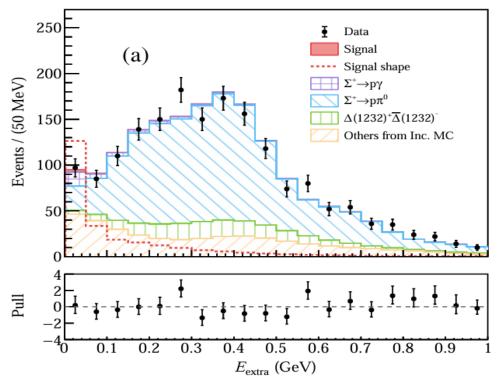

Rep. Prog. Phys. 86, 016201 (2023)

 $\Sigma^+ \rightarrow p +$ Decay to BSM particle invisible

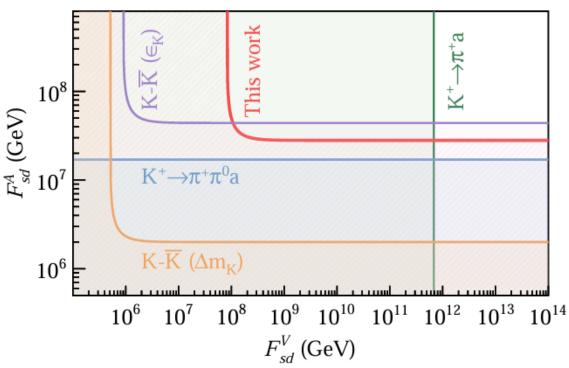
$$m_a \propto 1/f_a \Rightarrow m_a \ll 1 \text{eV}$$

$$\frac{\Gamma(\Sigma^{+} \to pa)}{16\pi} = \frac{M_{\Sigma^{+}}^{3}}{16\pi} \left(1 - \frac{M_{p}^{2}}{M_{\Sigma^{+}}^{2}}\right)^{3} \left(\frac{(-1)^{2}}{|F_{sd}^{V}|^{2}} + \frac{0.34^{2}}{|F_{sd}^{A}|_{-}^{2}}\right)$$

Our measurement can set limits on axion-fermion effective decay constants

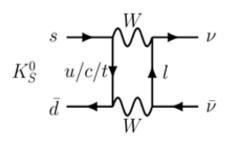


PRD 102 015023 (2020)


Massless dark photon

Search for $\Sigma^+ \rightarrow p$ + invisible at BESIII

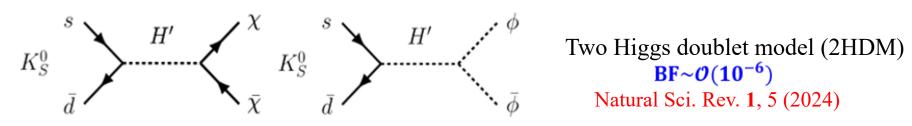
- PLB 852, 138614 (2024)
- Search is performed via $J/\psi \to \Sigma^+ \bar{\Sigma}^-$ using 10 billion J/ψ events using double tag technique
- Invisible particle with mass hypothesis of zero
- Total energy deposited in EMC by extra photons is used to extra the signal


 $B(\Sigma^+ \to p + invisible) < 3.2 \times 10^{-5}$ @ 90% C.L.

Competitive limits on the axial-vectorial part of axion-fermion effective decay constant F_{sd}^{A}

Invisible K_S^0 decays

✓ SM decays



Very rare (BF < 10^{-16}) K_S^0 u/c/t $\bar{\nu}$ Very rare (BF < 10^{-16})

FCNC and Helicity suppression

Phys. Rev. D **91**, 015004 (2015)

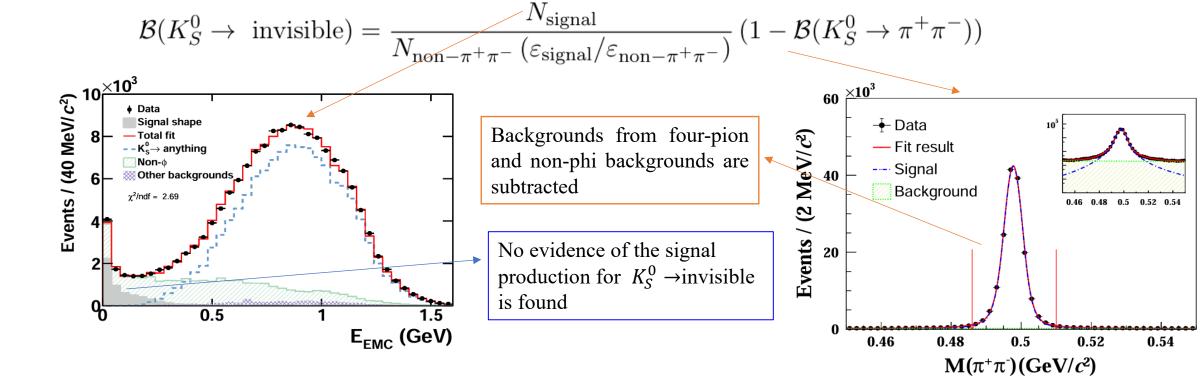
✓ Decay to DM particles

✓ Ordinary matter particle oscillation

$$K_S^0 \leadsto K_S^{0\prime}$$

Mirror matter model BF~ $\mathcal{O}(10^{-6})$

arXiv: 2006.10746

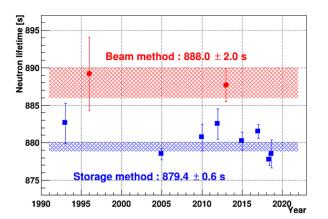

✓ Input for CP test

Bell-Steinberger relation **connects CPTV** to the amplitudes of all decay channels of neutral kaons. BUT currently assumes no invisible modes

Invisible K_S^0 decays

JHEP 05, 092 (2025)

- \triangleright Search is based on 10 billion J/ψ events collected by the BESIII detector via $J/\psi \to \phi K_S^0 K_S^0$ decay.
- $\rightarrow J/\psi \rightarrow \phi K_S^0 K_L^0$ is forbidden by C-parity conservation.
- $\succ K_S^0$ \rightarrow invisible decay rate can be calculated as,


 $B(K_S^0 \rightarrow \text{invisible}) < 8.4 \times 10^{-4}$ at the 90% CL (First direct measurement).

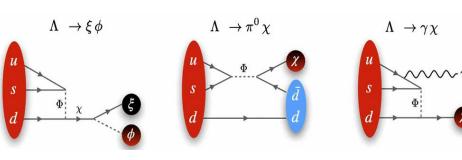
Dark baryon

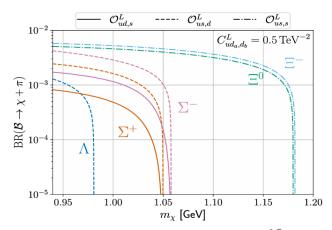
Coincidence issue:

Similarity between DM and baryon densities: $\rho_{DM} \approx 5.4 \rho_{baryon}$

❖ Neutron lifetime puzzle

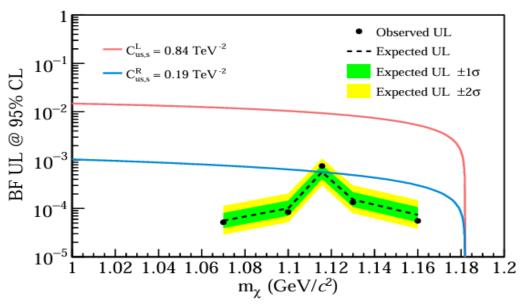
arXiv: 2505.22140 (2025)


Potential connection between their origins **DM may have non-zero baryon number**


$$\tau_n^{\text{beam}} = \frac{\tau_n^{\text{bottle}}}{\text{Br}(n \to p + \text{ anything })}$$

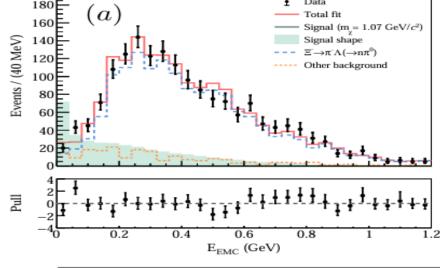
$$\mathcal{B}(n \to \text{dark}) \sim 1\%$$

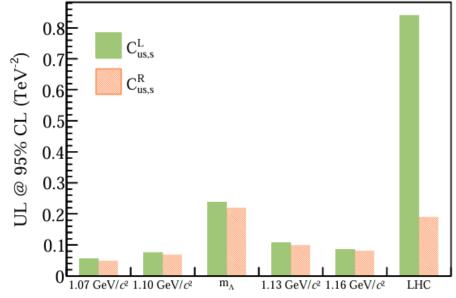
- Motivates the existence of dark baryon
- ❖ B-Mesogenesis mechanism: Can explain the symmetry between visible mater and antimatter and origin of DM.
- **❖** Hyperon dark decays


PRD **105**, 115005 (2022)

Search for dark baryon in $\Xi^- \to \pi^- \chi$

Analysis strategy:


- $J/\psi \to \overline{\Xi}^+\Xi^-$ from 10 billion J/ψ events
- Double tag method: $\overline{\Xi}^+ \to \overline{\Lambda}\pi^+, \overline{\Lambda} \to \overline{p}\pi^+, \Xi^- \to \pi^- + \chi$
- χ is the dark baryon with an invisible signature with masses of 1.07, 1.10, m_{Λ} , 1.13, 1.13 GeV/c²
- The invisible signal should have EMC energy deposit peaking at zero
- No evidence of significant signal events



Corresponding Wilson coefficients C_{uss}^L and C_{uss}^R are more stringent than the previous limits from the LHC searches for the colored mediators

90% C.L. UL on B($\Xi^- \to \pi^- + \chi$) varies from $(4.5 - 76) \times 10^{-5}$

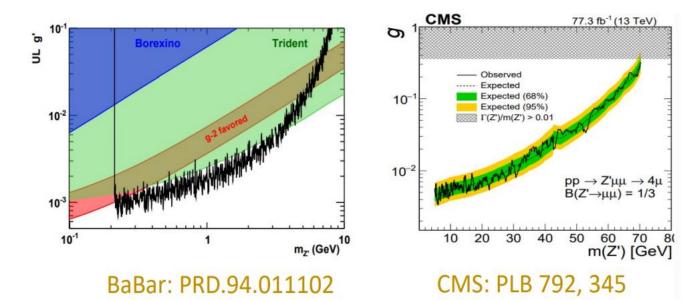
Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \to \mu^+\mu^-+$ invisible PRD 109, L031102 (2024)

- A new type of massive vector meson X_1 or scalar boson X_0 may appear in SM extension of the anomaly free gauged U(1) or $U(1)_{L_{\mu}-L_{\tau}}$ model.
- They only couple to the second or third generations of leptons $(\mu, \nu_{\mu}, \tau, \nu_{\tau})$ with the coupling strength $g'_{0,1}$.
- The $X_{0.1}$ can contribute to the muon anomalous magnetic moment and explain the $(g-2)_{u}$ anomaly.

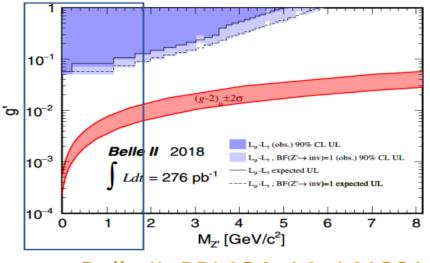
$$\Delta a_{\mu}^{scalar} = \frac{g_0^2}{8\pi^2} \int_0^1 dx \frac{m_{\mu}^2 (1-x)(1-x^2)}{m_{\mu}^2 (1-x)^2 + m_{Z'}^2 x}$$

$$\Delta a_{\mu}^{vector} = \frac{g_1^2}{8\pi^2} \int_0^1 dx \frac{2m_{\mu}^2 x (1-x)^2}{m_{\mu}^2 (1-x)^2 + m_{Z'}^2 x}$$

arXiv:1610.06587 (2016)


• Can be accessible via $J/\psi \to \mu^+ \mu^- X_{0,1}$

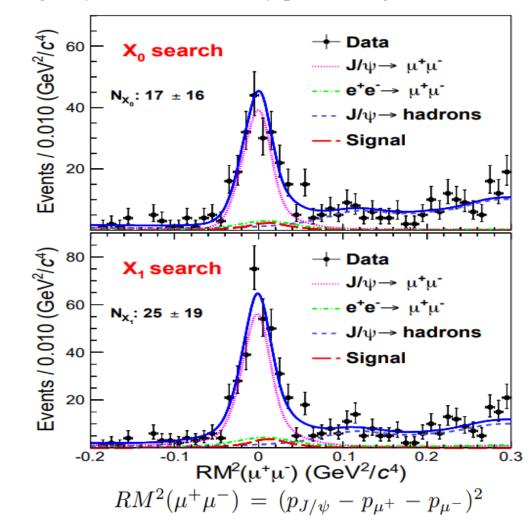
JHEP 10 (2020)

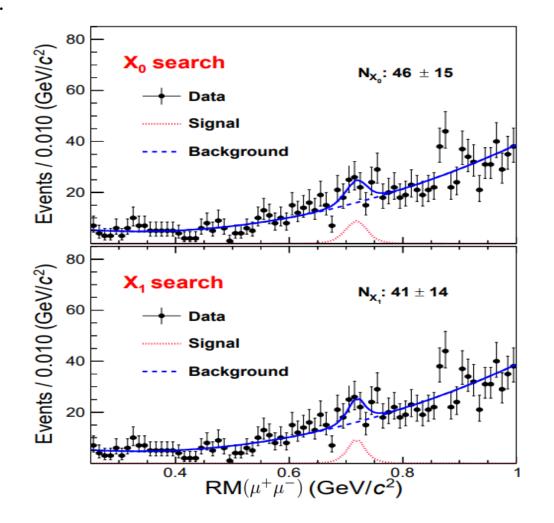

08/26/2025

Search for an invisible muon philic scalar X_0 or vector X_1 via $I/\psi \to \mu^+\mu^-+$ invisible PRD 109, L031102 (2024)

- Current experimental constraints:
 - The g' space with $Z' \rightarrow \mu^+ \mu^-$

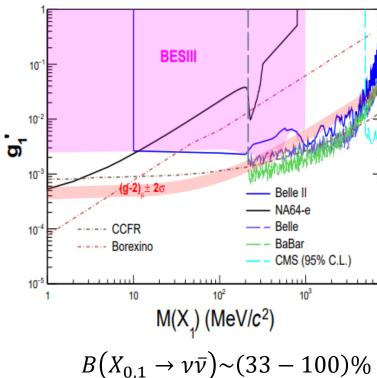
• The g' space with $Z' \rightarrow invisible$

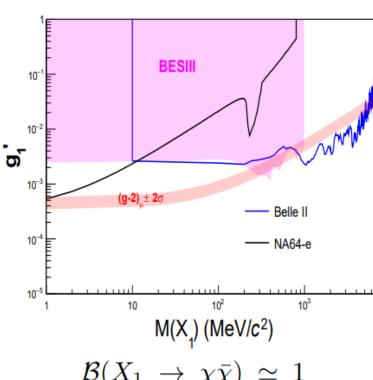

Belle II: PRL124 14, 141801


✓ BESIII can contribute to the low mass region

Search for a light muon philic scalar X_0 or vector X_1 is performed via $J/\psi \to \mu^+\mu^- X_{0,1}$ with $X_{0,1}$ invisible decays using $(8.998 \pm 0.039) \times 10^9$ J/ ψ events collected by the BESIII experiment.

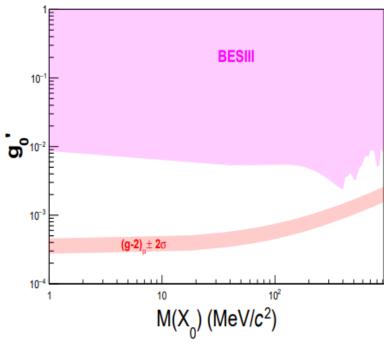
Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \to \mu^+\mu^-+$ invisible PRD 109, L031102 (2024)


Signal yield is extracted by performing a series of ML fits.


Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^{+}\mu^{-}$ +invisible PRD 109, L031102 (2024)

"vanilla" $L_{\mu} - L_{\tau}$ model

$$B(X_{0.1} \to \nu \bar{\nu}) \sim (33 - 100)\%$$


"invisible" $L_{\mu} - L_{\tau}$ model

 $\mathcal{B}(X_1 \to \chi \bar{\chi}) \simeq 1$

JHEP10(2020)207

"scalar" U(1) model

 X_0 is long-lived with displaced decay or predominately decays to invisible particles

Summary

- > Top priority is to search for new physics beyond the SM.
- ➤ BESIII plays a unique role to search for dark sector from e⁺e⁻ collisions at the tau-charm region.
- ➤ A series of searches for invisible decays, dark photon, ALP and muon-philic particles have been performed at BESIII.
- > Only null results are available so far.
- ➤ BESIII limits exclude a large fraction of the parameter space of the new physics models beyond SM.
- \triangleright More results is expected to come in the near future, especially with recently collected 20 fb⁻¹ of $\psi(3770)$ data.

Chin. Phys. C 44, 040001 (2020)

Thanks!