Dark matter search via annual modulation

Hyunsu Lee

Institute for Basic Science Center for Underground Physics

The 22nd Lomonosov conference August 26th, 2025

Dark matter annual modulation

Expected dark matter signal rate

- The Earth's orbit creates a seasonal "WIMP wind"
 - ❖ Maximum velocity expected between June 2nd and 3rd (~152.5 days)
- For a give energy bin : $R(t) = R_0(t) + A\cos\left(\frac{2\pi}{T}(t-\varphi)\right)$

A Persistent Signal: The DAMA/LIBRA Anomaly

DAMA/LIBRA 2-6 keV

The DAMA/LIBRA Experiment & Claim

- 250 kg Nal(TI) crystal array at Gransasso (Italy)
- Observed clear annual modulation for over 25 years
 - Claimed dark matter discovery

The DAMA/LIBRA Experiment & Claim

- 250 kg Nal(TI) crystal array at Gransasso (Italy)
- Observed clear annual modulation for over 25 years
 - Claimed dark matter discovery

JCAP 04, 010 (2009)

Greatly matched with Standard-halo model of the dark matter distribution

The DAMA/LIBRA Experiment & Claim

E (keV)	A (counts/day/kg/keV)	ϕ (day)	C.L.
1 2	0.0191 ± 0.0020	152.5 (fixed)	9.7σ
1 ~ 3	0.0191 ± 0.0020	149.6 ± 5.9	9.6σ
1 ~ 6	0.01048 ± 0.00090	152.5 (fixed)	11.6σ
	0.01058 ± 0.00090	144.5 ± 5.1	11.8σ
2 (0.00996 ± 0.00074	152.5 (fixed)	13.4σ
2 ~ 6	0.01014 ± 0.00074	142.4 ± 4.2	13.7σ

Nucl. Phys. At. Energy 22, 329 (2021)

2-6 keV

Annual modulation search with different target

A Puzzling Discrepancy: DAMA vs other experiments

Requiring Model-independent test with same NaI(TI) crystals

8

Apple-to-Apple Comparison with NaI(TI) crystals

Annual modulation search practice

Measured event rate as a function of time R(t)

$$R(t) = R_0(t) + A\cos\left(\frac{2\pi}{T}(t - \varphi)\right)$$

$R_0(t) = \sum_{i=1}^{N_{\mathrm{bkgd}}} C_{ij} \exp(-\lambda_{ij} t)$

COSINE-100

Total Model __ 121mTe — ²²Na Data 10^{0} Event Rate [dru]

Energy [keV] Phys. Rev. D 106, 052005 (2022)

20

25

30

35

Time-dependent background components

1-3 keV

	Expected Initial Rate	Fitted Initial Rate	Half-life
Component	$(counts/day/kg/keV_{ee})$	$(counts/day/kg/keV_{ee})$	(years)
Total	3.67 ± 0.34	3.59 ± 0.15	
^{3}H	1.31 ± 0.32	1.33 ± 0.08	12.3
Surface ²¹⁰ Pb	1.13 ± 0.10	1.05 ± 0.08	33.8 ± 8.0
Internal ²¹⁰ Pb		$(9.13 \pm 0.72) \times 10^{-1}$	22.3
Flat		$(1.83 \pm 0.56) \times 10^{-1}$	
¹⁰⁹ Cd		$(5.22 \pm 0.60) \times 10^{-2}$	1.26
$^{127\mathrm{m}}\mathrm{Te}$		$(2.82 \pm 0.50) \times 10^{-2}$	0.29
¹¹³ Sn		$(2.35 \pm 0.36) \times 10^{-2}$	0.31
^{22}Na	$(5.68 \pm 1.61) \times 10^{-3}$	$(6.28 \pm 1.46) \times 10^{-3}$	2.60
$^{121\mathrm{m}}\mathrm{Te}$	$(3.15 \pm 0.65) \times 10^{-3}$	$(3.24 \pm 0.61) \times 10^{-3}$	0.45
⁶⁰ Co	$(4.38 \pm 0.28) \times 10^{-5}$	$(4.38 \pm 0.28) \times 10^{-5}$	5.27

arXiv:2409.13226

Precise background understanding is key factor

15

10

10-

10-

Modulation analysis adopted by DAMA/LIBRA

Eur. Phys. J. C 73, 2648 (2013)

	Period	Mass (kg)	Exposure $(kg \times day)$	$(\alpha - \beta^2)$
DAMA/LIBRA-1	Sept. 9, 2003–July 21, 2004	232.8	51405	0.562
DAMA/LIBRA-2	July 21, 2004-Oct. 28, 2005	232.8	52597	0.467
DAMA/LIBRA-3	Oct. 28, 2005-July 18, 2006	232.8	39445	0.591
DAMA/LIBRA-4	July 19, 2006–July 17, 2007	232.8	49377	0.541
DAMA/LIBRA-5	July 17, 2007-Aug. 29, 2008	232.8	66105	0.468
DAMA/LIBRA-6	Nov. 12, 2008-Sept. 1, 2009	242.5	58768	0.519
DAMA/LIBRA-7	Sep. 1, 2009-Sept. 8, 2010	242.5	62098	0.515
DAMA/I IRRA_phase1	Sept. 9, 2003—Sept. 8, 2010		$379795 \sim 1.04 \text{ top.} \times$	

DAMA/LIBRA-phase1 Sept. 9, 2003–Sept. 8, 2010 $3/9/95 \simeq 1.0$ DAMA/NaI + DAMA/LIBRA-phase1: 1.33 ton × yr

Calculate residual rates of each yearly cycle (Sept.~Aug.)

Nucl. Phys. At. Energy 19, 307 (2018)

DAMA/LIBRA-phase2 annual cycle	Period	Mass, kg	Exposure, kg · d	$(\alpha - \beta^2)$
1	Dec. 23, 2010 - Sept. 9, 2011	Commissioning of phase2		2
2	Nov. 2, 2011 - Sept. 11, 2012	242.5	62917	0.519
3	Oct. 8, 2012 - Sept. 2, 2013	242.5	60586	0.534
4	Sept. 8, 2013 - Sept. 1, 2014	242.5	73792	0.479
5	Sept. 1, 2014 - Sept. 9, 2015	242.5	71180	0.486
6	Sept. 10, 2015 - Aug. 24, 2016	242.5	67527	0.522
7	Sept. 7, 2016 - Sept. 25, 2017	242.5	75135	0.480
DAMA/LIBRA-phase2 Nov. 2, 2011 - Sept. 25, 2017		$411137 \simeq 1.13 t \cdot yr$		0.502
DAMA/NaI + DAMA/LIBRA-phase1 + DAMA/LIBRA-phase2: 2.46 t · yr				

What if there is time-dependent background?

- Time-dependent background model of DAMA/LIBRA
 - Yearly average to obtain residual rate

$$R(t) = R_0(t) + A\cos\left(\frac{2\pi}{T}(t - \varphi)\right)$$
 Assuming: $R_0(t) = C$

However, if there is time-dependent background...

Center for Underground Physics (CUP),

Hvun Su Lee.

What if we use wrong background model?

The background truly constant

- The DAMA/LIBRA analysis assumes a constant, timeindependent background
- However, experiments like COSINE-100 and ANAIS-112 have modeled time-dependent backgrounds

The background truly constant

- The DAMA/LIBRA analysis assumes a constant, timeindependent background
- However, experiments like COSINE-100 and ANAIS-112 have modeled time-dependent backgrounds

DAMA/LIBRA's latest 3 years data

The latest 3 years data of phase-2

Desirable to show full data and to study detailed fit parameters and correlations

Institute for Basic Science (IBS)

Energy calibration (electron recoil) of DAMA/LIBRA

 Linear fit to various calibration points (internal x-ray, gamma-ray and external sources)

Energy calibration (electron recoil)

Electron response

Gamma/x-ray response

apple-to-apple For the comparison, we'd better to follow DAMA/LIBRA's method

Energy calibration (nuclear recoil)

Nuclear-recoil energy calibration (keV_{nr})

DAMA/LIBRA used ²³²Cf neutron source and compared with simulated spectrum Recent measurements used mono-energetic neutron beams with neutron tagging detectors However, different QFs between DAMA/LIBRA's crystals and other experiments' crystals may be possible

COSINE-100 experiment (2016~2023)

- YangYang underground laboratory
 - ❖ October/2016 ~ March/2023
- Decommissioning
 - Move to Yemilab
 - Upgrade of detector for high light yield

COSINE-100 Background understanding

Comparison with DAMA: Energy calibration

Linear calibration to 59.54 keV: keV_{ee}

Nuclear-recoil energy calibration (keV_{nr})

Quenching factor (QF)

Measured electron-equivalent energy/True nuclear recoil energy

Signal region : 6.7-20 keV_{nr}

DAMA/LIBRA: 2-6 keV_{ee}

COSINE-100: 0.85-3.12 keV_{ee}

Modulation fit of COSINE-100 full data

$$R_i(t) = A \cos\left(\frac{2\pi(t-\phi)}{T}\right) + \sum_j C_{ij} e^{-\lambda_{ij}t}.$$

Modulation signals

10 time-dependent components

COSINE-100 full dataset

COSINE-100 full dataset fits

Posterior of COSINE-100 full dataset

Simulated experiments (300,000) assuming DAMA/LIBRA modulation signals

arXiv:2409.13226

Sci. Adv. (in press)

COSINE-100 full dataset disfavors DAMA/LIBRA in

both electron recoil and nuclear recoil

COSINE-100 full dataset fits

Phase floated 2-dimensional fit for COSINE-100 full dataset

Sci. Adv. (in press) COSINE-100 full dataset disfavors DAMA/LIBRA in both electron recoil and nuclear recoil

COSINE-100 full dataset fits

E	A (counts/day/kg/keV _{ee})			
(keV _{ee})	COSINE-100 DAMA/LIBRA			
1~3	0.001 ± 0.005	0.019 ± 0.002		
1~6	0.002 ± 0.003	0.010 ± 0.001		
2~6	0.005 ± 0.003	0.010 ± 0.001		

E	A (counts/day/kg/3.3 keV _{nr})		
(keV _{nr})	COSINE-100	DAMA/LIBRA	
6.7~20	0.001 ± 0.003	0.010 ± 0.001	
arXiv:2409.13226			

Sci. Adv. (in press)

COSINE-100 full dataset disfavors DAMA/LIBRA in

both electron recoil and nuclear recoil

ANAIS-112

- 112.5 kg detector (nine modules)
- Physics run started from Aug. 2017 (currently running experiment)
- Canfranc Underground Laboratory (850 m rock overburden)

~15 photoelectrons/keV Similar with COSINE-100

~95% live time

Dead Time (2.2 %)
Down Time (3.1 %)

Background understanding of ANAIS-112

- Time-dependent backgrounds are modeled
 - Simulation underestimates background events below 2 keV
- · Various background hypothesis have been studied

Modulation analysis with 6 years data

Minimizing:

$$\chi^2 = \sum_{i,d} \frac{\left(n_{i,d} - \mu_{i,d}\right)^2}{\sigma_{i,d}^2}$$

ANAIS-112 modulation results

ANAIS-112 results are incompatible with DAMA/LIBRA

ANAIS-112 modulation results

• Best fit are incompatible with DAMA/LIBRA results at 4.0σ and 3.5σ in 1-6 keV and 2-6 keV, respectively

Hyun Su Lee,

Institute for Basic Science (IBS)

Combined analysis between COSINE and ANAIS

Combining published data (~ 3 years)

ANAIS-112: PRD 103, 102005 (2021)

COSINE-100: PRD 106, 052005 (2022)

Energy ROI	Combined Amplitude (dru) MCMC	DAMA Exclusion	
1-6 keV	-0.0003 ± 0.0028	3.6σ	
2-6 keV	0.0023 ± 0.0029	2.6σ	

Combining 6 years modulation result

Energy ROI	Combined result	DAMA Exclusion
1-6 keV	0.0005 ± 0.0019	4.68σ
2-6 keV	0.0027 ± 0.0019	3.53σ

What's next for DAMA/LIBRA?

DAMA/LIBRA

- End of data taking (2024)
- All crystals were remained in the Gran Sasso (LNGS)
- Desirable to study comprehensive time-dependent analysis
- Sent "Letter of Intent" by Spokespersons of NaI(TI) experiment to LNGS director to understand reason of the modulation signals
- Crystal development
 - ❖ ANAIS-112 and COSINE-100 detectors have ~2-3 times higher background
 - ❖ Better if we have lower background detectors (letter than DAMA/LIBRA)
 - □SABRE, PICO-LON, COSINE-200 try to develop low-background NaI(TI) crystals
 - □COSINUS developed cryogenic detector to discriminate electron recoil background
- ANAIS-112 will take more data to reach 5 sigma level conclusion
- COSINE-100U will provide additional information for lower energy

Summary

 Annual modulation is interesting channel to search dark matter interaction

 DAMA/LIBRA's modulation signals are disfavored with ANAIS-112 and COSINE-100 with significance more than 3 sigma

 Further efforts to understanding DAMA/LIBRA's signals are ongoing

Modulation fit

Event Rate [dru]

$$R_i(t) = A \cos\left(\frac{2\pi(t-\phi)}{T}\right) + \sum_j C_{ij} e^{-\lambda_{ij}t}$$

Modulation signals

10 time-dependent components

Simulated experiments

ROI + Data

Nal-based experiments running or proposed

- Advantages of NaI(TI)
 - Well known technology
 - ❖ Possible to grow ~10 kg crystals
 - High light output
 - Combination of low-mass (Na) and high-mass (I) element
 - Proton odd element
- Disadvantages of NaI(TI)
 - Hygroscopic crystals
 - Less n/gamma separation (i.e. liquid xenon or photon-sensitive detectors)
- So far, NaIAD, DM-Ice, KIMS-NaI, DAMA/LIBRA, ANAIS-112 and COSINE-100 released DM search results with NaI(TI) crystals

Experiment	Location	Target	Mass [kg]	Status
DAMA/LIBRA	LNGS	NaI(Tl)	250	running
ANAIS-112	LSC	NaI(Tl)	112.5	running
COSINE-100	Y2L	NaI(Tl)	106/61.3	upgrading
COSINE-200	Yemilab	NaI(Tl)	~200	in preparation
SABRE North / South	LNGS+ SUPL	Nal(Tl)	~50	in preparation
COSINUS	LNGS	Nal	~1	in preparation
PICOLON	Kamioka	NaI(Tl)	~50	in preparation