**Cosimo Bambi Fudan University** 







# Summary

- There are 108-109 black holes in the Galaxy
  - The closest black hole maybe within 20-25 light years of Earth
- Can we send a probe to the closest black hole to test the nature of the compact object?
  - Are astrophysical black holes the Kerr black holes of GR?
  - Do astrophysical black holes have an event horizon?

- There are 108-109 black holes in the Galaxy
  - The closest black hole maybe within 20-25 light years of Earth
- Can we send a probe to the closest black hole to test the nature of the compact object?
  - Are astrophysical black holes the Kerr black holes of GR?
  - Do astrophysical black holes have an event horizon?
- Certainly extremely challenging, but it may not be unrealistic

- There are 108-109 black holes in the Galaxy
  - The closest black hole maybe within 20-25 light years of Earth
- Can we send a probe to the closest black hole to test the nature of the compact object?
  - Are astrophysical black holes the Kerr black holes of GR?
  - Do astrophysical black holes have an event horizon?
- Certainly extremely challenging, but it may not be unrealistic
- It is not obvious that a probe can do better than astrophysical observations

## Some Premises...

#### Some Premises...

- Laser propulsion:
  - G. Marx, Interstellar Vehicle Propelled by Terrestrial Laser Beam, Nature 211, 22-23 (1966)
  - J.L. Redding, Interstellar Vehicle Propelled by Terrestrial Laser Beam, Nature 213, 588-589 (1967)
- Interstellar missions to nearby exoplanets:
  - Breakthrough Initiative
  - Project Starlight (UC Santa Barbara)
  - Interstellar Probe (JHU & NASA)
  - Project Dragonfly (I4IS)
  - Gossamer Roadmap (ESA)

## 1. The Closest Black Hole

# The Known Stellar-Mass Black Holes in the Milky Way

- ~70 black hole "candidates" in X-ray binary systems
  - ~25 black holes in X-ray binary systems with a dynamical measurement of their mass

- 3 GAIA black holes in binary systems
  - GAIA-BH1 at ~480 pc (~1,560 light years) from Earth (El-Badry+ 23)

- 1 isolated black hole
  - OGLE-2011-BLG-0462 at 1.6 kpc (Sahu+ 22)

### Milky Way

• White dwarfs: ~1 10<sup>10</sup>

- Black holes: ~1 10<sup>8</sup> to ~1 10<sup>9</sup>
  - Timmes+ 96: ~1 109 black holes
  - Olejak+ 20: 1.0 10<sup>8</sup> isolated black holes in the Galactic disk
    8 10<sup>6</sup> black holes in binary systems in the Galactic disk

1 black hole: 10-100 white dwarfs

### **Nearby Objects**

- 10 white dwarfs within ~25 light years of the Solar System
  - Sirius B (at 8.6 light years)

30 white dwarfs within ~30 light years of the Solar System

- A black hole within ~15 light years of the Solar System
- A black hole within ~50 light years of the Solar System

### Detecting Nearby Black Holes

- Shvartsman 71
- Meszaros 75
- McDowell 85
- etc.

Mass accretion rate from the interstellar medium

$$\dot{M}_{\rm B} = 4\pi \frac{(GM_{\bullet})^2}{(v_{\bullet}^2 + C_{\rm ISM}^2)^{3/2}} \mu_{\rm ISM} n_{\rm ISM} m_p$$



### Detecting Nearby Black Holes

Murchikova & Sahu 25

Multi-telescope observations

 Current observational facilities may detect isolated black hole in a warm interstellar medium within 150 light years of Earth



## 2. Interstellar Mission

## **Chemically Propelled Spacecrafts**

- Tsiolkovsky rocket equation:
  - $m_i / m_f = exp(\Delta v / v_e)$

- Liquid hydrogen/liquid oxygen:
  - $v_e \sim 4.5 \text{ km/s}$
  - $\Delta v = 0.1$  c and  $m_f = m_p$ 
    - m<sub>i</sub> >> m<sub>Universe</sub>



#### Nanocraft

- Gram-scale spacecraft:
  - Gram-scale wafer: fully functional space probe (computer processor, thrusters, solar panels, navigation and communication equipment, etc.)
  - Light sail: thin, meter-scale, dielectric metamaterial (to accelerate the probe)



#### Nanocraft

Ground-based high-power lasers should accelerate the nanocraft

- Breakthrough Starshot Initiative:
  - Nanocraft to reach Alpha Centauri in ~20 years (Parkin 18), v/c = 0.2

Higher velocities can be reached at higher costs for the mission

• No specific technical problems to reach v/c = 0.9

#### Mission

Black hole at 20-25 light years

Nanocraft with v/c = 1/3

- 60-75 years for the nanocrafts to reach the black hole
- 20-25 years for the signal to reach the Earth
- 80-100 years the total mission

#### Mission



## 3. Near the Black Hole...

## Orbiting Configuration (?)



## Flyby Configuration



#### **Tests of Fundamental Physics**

Kerr metric

Event horizon

Variation of fundamental constants

#### Tests of the Kerr Metric



## **Event Horizon**



#### Variation of Fundamental Constants



- If the black hole is within 20-25 light years
  - The technology may be developed within 20-30 years

- If the black hole is within 20-25 light years
  - The technology may be developed within 20-30 years
- If the black hole is not within 20-25 light years, but still within 40-50 light years
  - The technological requirements are more challenging

- If the black hole is within 20-25 light years
  - The technology may be developed within 20-30 years
- If the black hole is not within 20-25 light years, but still within 40-50 light years
  - The technological requirements are more challenging
- If the distance of the black hole is more than 40-50 light years
  - It is not a problem of technology: the black hole is too far...

#### Issues...

- How can we find the closest black hole?
- How can we send the spacecrafts to the right place?
- Technology for the spacecrafts... nanocrafts?
- How can the nanocraft start orbiting around the black hole?
- Designing the scientific tests
- Tidal effects near the black hole?
- How can the nanocraft send the data to Earth?

# Thank You!