

Study of the process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ with CMD-3

Solodov E.P. (CMD-3 collaboration)
Budker INP, Novosibirsk

Lomonosiv25, August 2025

VEPP-2000 (after upgrade 2013-2016)

VEPP-2000 parameters:

- c.m. energy 0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity at 2 GeV: 1.0x10³² cm⁻² sec⁻¹ (project) 0.8x10³² cm⁻² sec⁻¹ (achieved)

Energy measurement

Starting from 2012, beam energy and energy spread are monitored continuously using Compton backscattering system with about 30 keV uncertainty

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

CMD-3 detector

Tracking:

* Drift Chamber in 1.3 T magnetic field $\sigma_{R\phi} \sim 100 \ \mu\text{m}$, $\sigma_{Z} \sim 2.5 \text{mm}$ $\sigma_{P}/P \sim \sqrt{0.6^2 + (4.4 \text{*p}[GeV])^2}$,%

Magnet:

 $0.25 \times_0 1.3 \times SC$ solenoid in common cryostat with LXe calorimeter

Calorimetry:

- Combined EM calorimeter (LXe,CsI, BGO)
- 13.4 X_0 in barrel part
 - σ_{E} /E ~ 0.034/ JE [GeV] \oplus 0.020 barrel
 - $\sigma_{\rm F}$ /E ~ 0.024/ JE [GeV] \oplus 0.023 -endcap
- * LXe calorimeter with 7 ionization layers with strip readout
 - ~2mm measurement of conversion point, tracking capability, shower profile (from 7 layers + CsI)

PID:

- × TOF system (σ_T < 1nsec) particle ID mainly for p, n
- * Muon range system

CMD-3 Collaboration at VEPP2000 collider

Integrated luminosity collected

> 1000 1/pb

More than 10 papers are published. More than 20 exclusive e+e- -> hadrons cross sections are under study.

02.06.2025

NUCLEUS-25, Solodov

6

Data analysis

Publication speed depends on limited manpower and complicated structures and interferences of intermediate states – no solid theory for this energy region.

Signature	Final states (preliminary, published)
2 charged	$\pi^+\pi^-$, K ⁺ K ⁻ , K _S K _L , p p
$2 ext{ charged} + \gamma ext{'s}$	$\pi^{+}\pi^{-}\gamma$, $\pi^{+}\pi^{-}\pi^{0}$, $\pi^{+}\pi^{-}2\pi^{0}$, $\pi^{+}\pi^{-}3\pi^{0}$,
2200	$\pi^{+}\pi^{-}4\pi^{0}$, $\pi^{+}\pi^{-}\eta$, $\pi^{+}\pi^{-}\pi^{0}\eta$,
	$\pi^{+}\pi^{-}2\pi^{0}\eta$, $K^{+}K^{-}\pi^{0}$, $K^{+}K^{-}2\pi^{0}$,
	$K^+K^-\eta$, $K_SK_L\pi^0$, $K_SK_L\eta$
4 charged	$2(\pi^{+}\pi^{-})$, $K^{+}K^{-}\pi^{+}\pi^{-}$, $K_{S}K^{\pm}\pi^{\mp}$
4 charged $+ \gamma$'s	$2(\pi^+\pi^-)\pi^0$, $2\pi^+2\pi^-2\pi^0$, $\pi^+\pi^-\eta$,
	$\pi^+\pi^-\omega$, $2\pi^+2\pi^-\eta$, $K^+K^-\omega$,
	$K_SK^{\pm}\pi^{\mp}\pi^0$
6 charged	$3(\pi^{+}\pi^{-}), K_{S}K_{S}\pi^{+}\pi^{-}$
6 charged $+ \gamma$'s	$3(\pi^+\pi^-)\pi^0$
Neutral	$\pi^{0}\gamma$, $2\pi^{0}\gamma$, $3\pi^{0}\gamma$, $\eta\gamma$, $\pi^{0}\eta\gamma$, $2\pi^{0}\eta\gamma$
Other	$nπ$, $π^0e^+e^-$, $ηe^+e^-$
Rare decays	η', D*(2007) ⁰

e+e- -> $\pi^+\pi^-$ has been published!

10.08.2025 solodov_2pi2pi0eta

Motivation for the multi-hadron states study

- Channels $e^+e^- -> \pi^+\pi^-\pi^0\pi^0\pi^0$ and $e^+e^- -> \pi^+\pi^-\pi^0\pi^0\eta$ are new for CMD-3 and are very rich for the intermediate states see BaBar analysis.
- For $\pi^+\pi^-\pi^0\pi^0\pi^0$ the $\omega\pi^0\pi^0$, $\omega f_0(980)$, $\phi f_0(980)$, $\rho\eta$, $\rho^+\rho^-\pi^0$ are seen
- For $\pi^+\pi^-\pi^0\pi^0\eta$ the $\omega a_0(980)$, $\phi a_0(980)$, $\rho^+\rho^-\eta$ are seen
- A search for the $f_1(1285)$ -> $a_0\pi^0$ -> $\eta\pi^0\pi^0$ reaction needs this development a C-odd resonance at E=641 M₂B We have collected about 50 pb⁻¹!
- The HPV in small from these reactions, but if there are many un-seen states with un-known intermediate channels significant contribution to the muon (g-2) can be. Intermediate states study is very important!

10.08.2025 solodov 2pi2pi0eta

BaBar and SND study

3

E_{c.m.}, GeV

 $m(\pi^{+}\pi^{-}2\pi^{0}\eta)$, GeV/c^{2}

SND - preliminary

Talk by A.Botov ar RAN session, Dubna 2024

Our analysis

Data used:

```
    Scan 2020 – from 1.870 to 1.935 GeV – 5 points with 10 pb<sup>-1</sup>/point 46.870 pb<sup>-1</sup>
    Scan 2021 – from 1.935 to 2007 GeV – 4 points with 10pb<sup>-1</sup>/point (24 pb<sup>-1</sup> at 2007) 48.400 pb<sup>-1</sup>
    Scan 2021-2022 at NN threshold and below to 1.600 Gev: 282.844 pb<sup>-1</sup>
    18 point at the threshold with ~1 MeV step – 10 pb<sup>-1</sup>/point (x5 to 2017 scan) 13 points below threshold with 10 MeV step – 5-10 pb<sup>-1</sup>/point
    Scan 2023 – from 1.600 down to 1.400 GeV – with ~10pb<sup>-1</sup>/point 176.860 pb<sup>-1</sup> (used for a cross check)
```

Simulation:

Reactions e+e- -> $\omega\pi^0\pi^0$, $\omega\pi^0\eta$, $\omega a_0(980)$ $\pi^+\pi^-\eta$ ($\eta->3\pi^0$ – channel for a cross check)

Event selection – our "standard" set for tracks and photons:

- Two "good" beam-originated tracks passed half of DC radius with a dE/dX corresponding to $\pi^+\pi^-$
- Four and more photons with 25 M₃B threshold (60 M₃B for small angles in BGO) $-\pi^+\pi^-\pi^0\pi^0(\eta)$
- Six and more photons for the signal

Kinematic fit

We perform fit in two hypotheses –

First: 2 charged pions and >=4 photons - one photon pair with π^0 mass and another photon pair without any constrain - 5C fit - a backgroun (huge!) from $\pi^+\pi^-\pi^0\pi^0$ - the obtained Chi2 is used to suppress it.

Second: 2 charged pions and 6 and more photons. Two best pairs (in the +-60 Mab window around mass π^0) are under π^0 mass constrains массой, and remaining pair has no constrain – 6C fit. All possible combinations (15 for each 6 photons) are tested to look for the best Chi2.

Energy-momentum conservation and photon angles in the π^0 rest system are used for the selections.

KinFitter developed by Sergey Gribanov is used.

Events $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$, 2-gauss fit η mass in $\gamma\gamma$

Simulation does not show any background from the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ process to the η peak

10.08.2025 solodov_2pi2pi0eta 13

Combinatorial problems - simulation

In the kinematic fit we are looking for the combination with the best $\chi 2$, apply cut on the value (< 100-120), and then plot the di-photon invariant mass to fit to η signal.

But in the same 6 photon there is another combination with acceptable value of χ^2 !!

Combinatorial problems - data

In the kinematic fit we are looking for the combination with the best $\chi 2$, apply cut on the value (< 100-120), and then plot the di-photon invariant mass to fit to η signal.

But in the same 6 photon there is another combination with acceptable value of χ^2 !! Shown in yellow

Green – good χ^2 from different 6-photon combination

Efficiency from simulation $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$

The e+e- -> $\omega a_0(980)$ model. Efficiency is determined from η or ω signals. (All η decays are inclued, ω -> 3π only.)

10.08.2025 solodov_2pi2pi0eta 16

Test process $e^+e^- \rightarrow \pi^+\pi^-\eta$, $\eta \rightarrow 3\pi^0$

The $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section

Preliminary – only for illustration. Not all corrections are investigated-included

The $e^+e^- -> \pi^+\pi^-\pi^0\pi^0\eta$ cross section

Extracting the $e^+e^- \rightarrow \omega \pi^0 \eta$ contribution

Selecting signal in $\gamma\gamma$ mass in +-70 M₂B window around η mass, and use 70 M₂B side bands for a background subtraction. Plot $\pi^+\pi^-\pi^0$ mass (two combinations) and fit ω signal by BW (width 9 M₂B) convoluted with resolution ~15-20 M₂B

The $e^+e^- \rightarrow \omega \pi^0 \eta$ cross section

A little bit below BaBar, but BaBar, probably had problem with background subtraction – point are below the threshold

The e⁺e⁻ $\rightarrow \omega \pi^0 \eta$ is below $\pi^+ \pi^- \pi^0 \pi^0 \eta$: what else?

Use combinations of 970-1003 energy points from 2021. Plot masses. Subtract background using side bands

No significant signal from $\omega a_0(980)$.

We have signal from ρ^+ (770), but no signal from ρ^0 . Could be $\rho(1420)\eta->\rho^+\pi^-+\pi^0\eta$? May be $\rho^+\rho^-\eta$, but not enough phase space at our energies.

10.08.2025 solodov 2pi2pi0eta 22

The e⁺e⁻ $\rightarrow \omega \pi^0 \eta$ is below $\pi^+ \pi^- \pi^0 \pi^0 \eta$: what else?

Only E=1003 MeV (2021 ~25 pb⁻¹). Plot masses. Subtract background using side bands

At 1003.5 M₃B probably we have a small indication of the $\omega_{a_0}(980)$ (BaBar has seen this signal at higher energies).

Conclusion

- Relatively sucsessful extraction of events with 6 photons for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ and $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ reactions efficiency ~2-3% (including Br η)
- Efficiency should be 1.5-2 times better, when new procedure for the photon finding using LXe strips would be finalized (not shown here).
- The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ and $e^+e^- \rightarrow \omega\pi^0\eta$ cross sections have been obtained in agreement with BaBar with better precision.
- We observe the e+e- $\rightarrow \rho^{+}\pi^{-}\pi^{0}\eta$ process contribution
- Work on the systematic uncertainties estimate is in progress

 expecting around 10-15%.
- Simulation with $\omega_{a_0}(980)$ shows relatively small model-dependent uncertainty.
- Detailed amplitude analysis needs more data.

Thanks