

Alexander Lanyov

JINR (Dubna, Russia)

on behalf of the CMS Collaboration

August 25, 2025

22nd Lomonosov Conference on Elementary Particle Physics Moscow, Russia

Outline

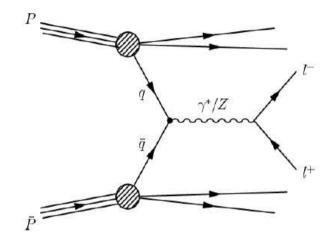
Outline:

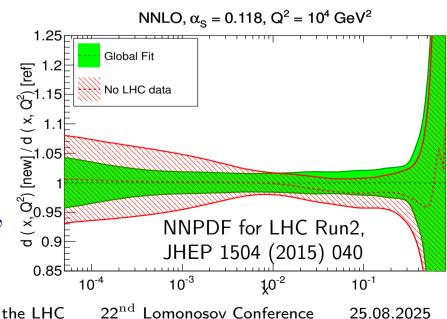
- Motivation to study dimuons at CMS
- Standard Model from Z boson to rare decays
- Exotica searches for new heavy resonances
- Conclusions

CMS Public Results:

http://cms-results.web.cern.ch/cms-results/public-results/publications/

Motivation to Study Dimuons at CMS

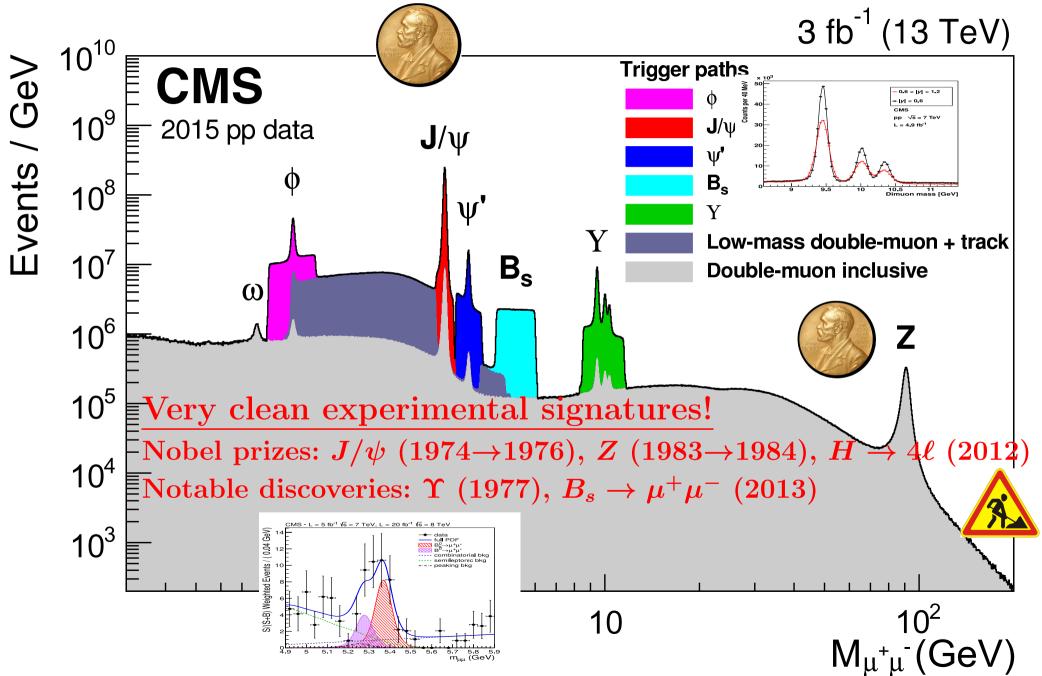

Many major discoveries were made before LHC in dimuon channel $(J/\psi, \Upsilon, Z, ...)$ — rather clean channel for finding new narrow resonances (often unexpected).


Why study dimuons at CMS?

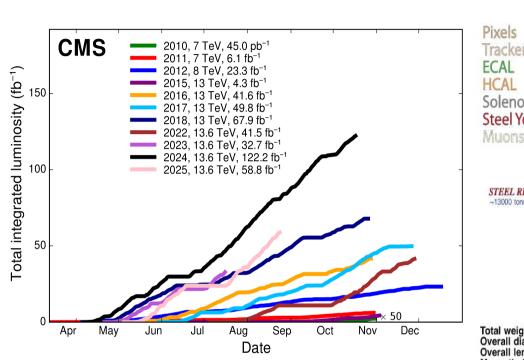
- Important Standard model benchmark channel Theoretical cross section calculated up to NNLO allowing tests of pQCD
- Many theoretical models predict contribution of New Physics in dimuon channel.
- Used to constrain PDFs

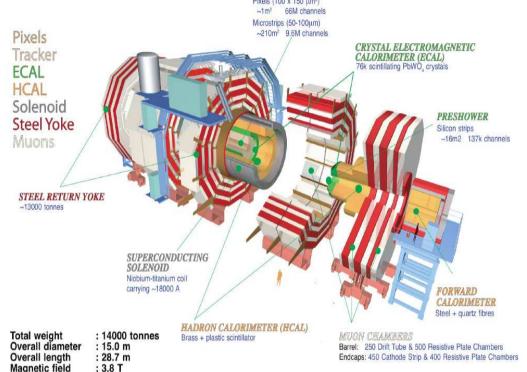
Alexander Lanyov

- Calibration and alignment, TnP
- Physics Processes produced in association with Z boson, $H \to ZZ$, $B \to \mu\mu$ discovery, 5σ discovery of $H \to b\bar{b}$ used also $Z \to \mu\mu$.



Dimuon Invariant Mass at CMS in Run 2




22nd Lomonosov Conference

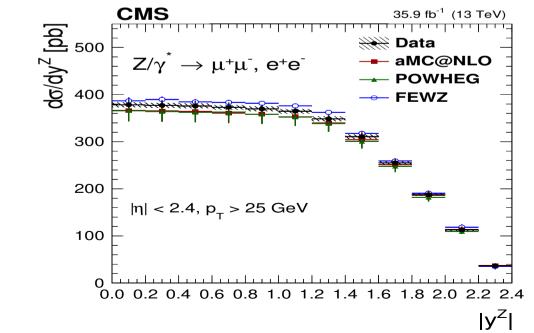
Data Runs at CMS

- Run 1 with $\sqrt{s} = 7-8$ TeV: ~ 30 fb⁻¹
- Run 2 with $\sqrt{s} = 13$ TeV: Rapid rise of integrated luminosity ~ 140 fb⁻¹
- Run 3 with $\sqrt{s} = 13.6$ TeV: started in 2022; Currently $\int \mathcal{L} dt \approx 250 \text{ fb}^{-1}$ Expected by the end of Run 3: $\int \mathcal{L} dt \approx 300 350 \text{ fb}^{-1}$


Drell-Yan

process studies

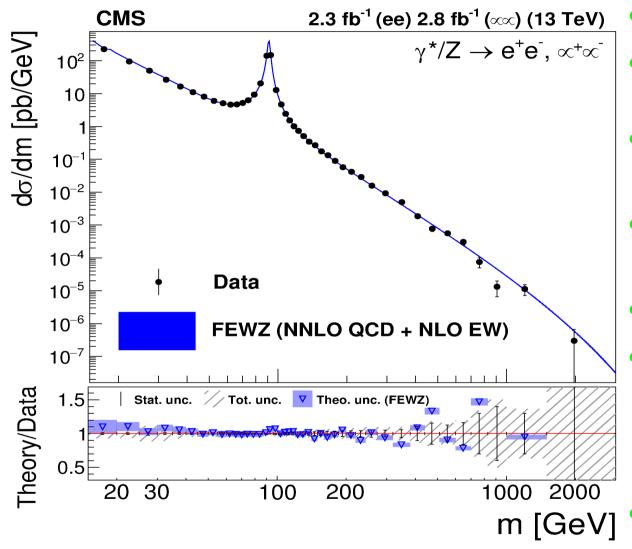
Z Production Cross Section at $\sqrt{s} = 13 - 13.6$ TeV



arXiv:2503.09742 (SMP-22-017)

Used data with 5 fb⁻¹ at $\sqrt{s} = 13.6$ TeV Single muon trigger: $p_T > 24$ GeV, $|\eta| < 2.4$. $\sqrt{s} = 13$ TeV: (JHEP 04 (2025) 162)

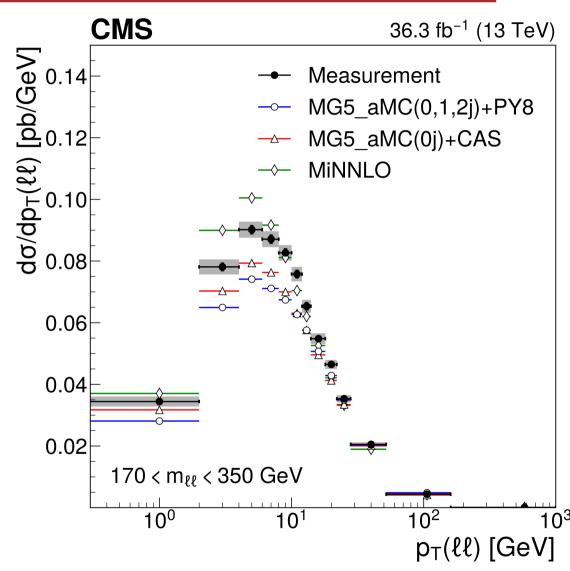
Z cross sections agree well between channels and with NNLO QCD expectation.


JHEP 12 (2019) 061 Diff. meas. (p_T, y, ϕ^*)

Drell-Yan 1D Cross Section (JHEP 12 (2019) 059)

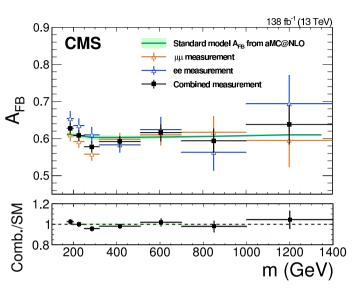
- $L = 2.8 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}$
- Mass range: 15—3000 GeV, divided by 43 bins
- Trigger: Isolated single muon trigger with $p_T > 20 \text{ GeV}$
- Kinematic cut: $p_T^{\text{Lead}} > 22 \text{ GeV}$, $p_T^{\text{Sub}} > 10 \text{ GeV}$, $|\eta| < 2.4$
- Corrected to the full space
- Systematic uncertainty: Low-mass: Eff. SF $\sim 3\%$ Z peak: FSR (< 2%) High-mass: Det. Res. (up to 150%)
- Combined both $\mu^+\mu^-$ and e^+e^- channels

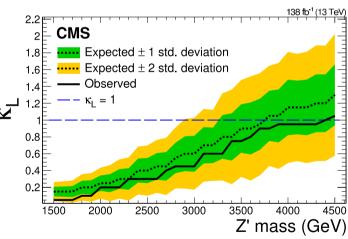
Generally good agreement between data and theory FEWZ (NNLO QCD, NNPDF3.0)


Mass dependence of the transverse momentum of Drell-Yan lepton pairs (Eur. Phys. J. C83 (2023) 628)

Measured double differential cross sections of DY lepton pair production, as a function of $p_{\rm T}(\ell\ell)$, and φ^* , in bins of dilepton masses: $m \in [50, 76, 106, 170, 350, 1000]$ GeV.

Measurements are compared to state-of-the-art predictions based on perturbative QCD including soft gluon resummation.


Additionally, similar measurements were performed requiring at least one jet in the final state.



Drell-Yan Forward-Backward Asymmetry (JHEP 08 (2022) 063)

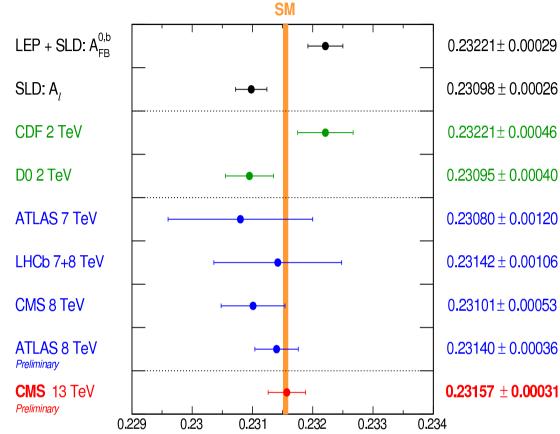
Measurement of A_{FB} can be a sensitive check of the Standard Model.

$$\frac{d\sigma}{d\cos\theta^*}\propto\frac{3}{8}\left[(1+\cos^2\theta^*)+\frac{A_0}{2}(1-3\cos^2\theta^*)\right]+A_{FB}\cos\theta^*$$
 θ^* is angle between μ^- and quark direction in c.m.s. of dilepton

- Good agreement to SM prediction of $A_{FB} \approx 0.6$
- Can be used to set limits on the presence of additional gauge boson Z' in SSM model: Lower mass limit = 4.4 TeV is set at 95% CL.

Direct resonance search is more sensitive (see later).

• $A_{\rm FB}$ can be used to measure Weinberg weak mixing angle $\sin^2 \theta_{\rm Eff}$



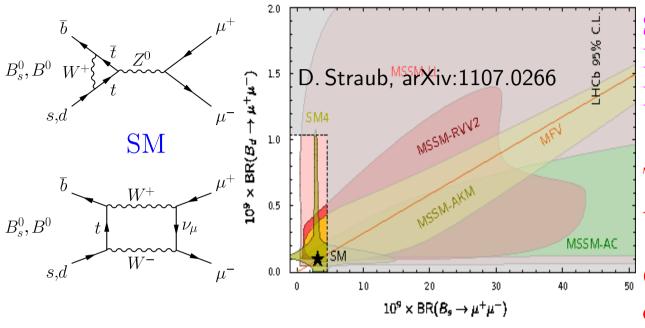
Measurement of Weak Mixing Angle with $A_{ m FB}$ (Phys. Lett. B 866 (2025) 139526) $^{\varsigma}$

Measurement of the leptonic effective weak mixing angle $\sin^2 \theta_{\rm Eff}^{\ell}$ by fitting the mass and rapidity dependence of the observed $A_{\rm FB}$ in dilepton events.

 $\sin^2 \theta_{\text{Eff}}^{\ell}$ is defined by relation for vector and axial-vector couplings of Z boson: $v_f/a_f = 1 - 4|Q_f| \times \sin^2 \theta_{\text{Eff}}^{\ell}$

Effective weak mixing angle from the combined samples:

$$\frac{\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00010(\text{stat}) \pm 0.00015(\text{syst}) \pm 0.00009(\text{theo}) \pm 0.00027(\text{PDF}) = 0.23157 \pm 0.00031}{0.00031}$$


- Uncertainties are significantly reduced compared to our previous measurement.
- The common value for LHC measurements is dominated by the CMS measurement.
- The results are consistent with the most precise measurements.

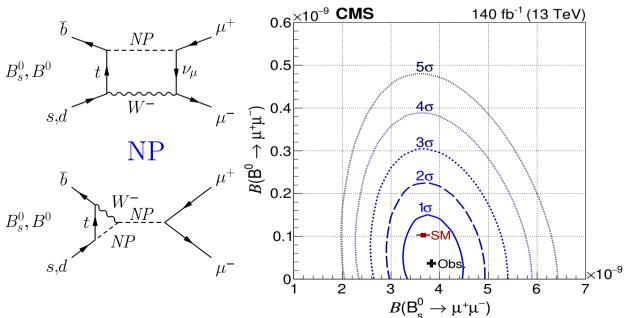
Rare Dimuon Decays in Standard Model

Discovery of Dimuon decay of $B_s^0 \& B^0$ (Phys. Lett. B842 (2023) 137955)

$$Br(B_s^0 \to \mu\mu) = (3.66 \pm 0.14) \times 10^{-9}$$

 $Br(B^0 \to \mu\mu) = (1.03 \pm 0.05) \times 10^{-10}$

The processes are sensitive to searches for BSM physics.


CMS results

on the $B_{sd}^0 \to \mu^+ \mu^-$ decays:

Br(
$$B_s^0 \to \mu^+ \mu^-$$
)=
 $\left[3.83_{-0.36}^{+0.38} (\text{stat})_{-0.21}^{+0.24} (\text{syst})\right] \times 10^{-9},$

Upper limit
$$Br(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL}$$

Effective B_s^0 lifetime in this decay: $\tau = 1.83^{+0.23}_{-0.20}(\text{stat})^{+0.04}_{-0.04}(\text{syst}) \text{ ps}$ Most precise single measurements and consistent with the SM.

13

Search for Higgs $\rightarrow \mu^+\mu^-$ (JHEP 01 (2021) 148)

Rare decay: $Br(H \to \mu^{+}\mu^{-})_{SM} = 2.2 \times 10^{-4}$

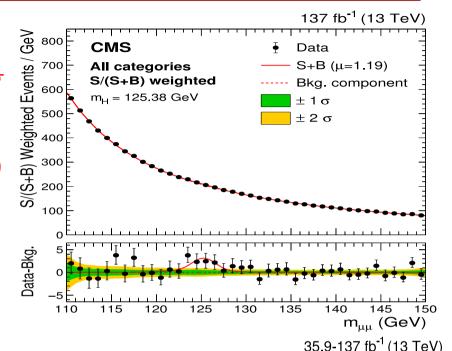
First evidence for $H \to \mu^+ \mu^-$ with significance 3σ

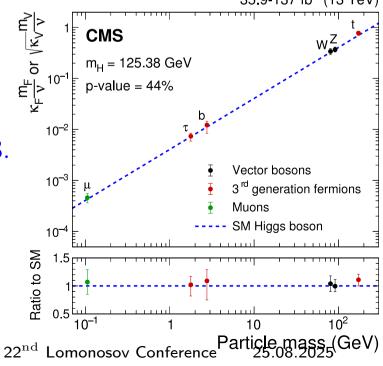
Four categories: VBF, ggH, $t\bar{t}H$, VH

Signal strength $\hat{\mu}^{\text{comb}} = 1.19^{+0.40}_{-0.39} \,(\text{stat.})^{+0.15}_{-0.14} \,(\text{syst.})$

Even more rare: $Br(H \rightarrow e^+e^-)_{SM} = 5 \times 10^{-9}$

CMS limit: Br $< 3 \times 10^{-4}$

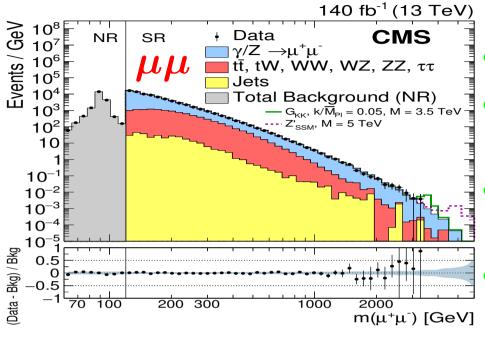

[Phys.Lett. B 846 (2023) 137783]

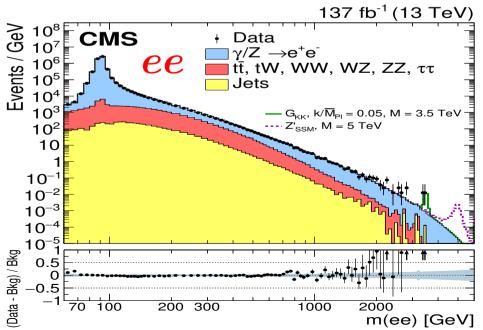

Still more rare: $Br(D^0 \to \mu^+ \mu^-)_{SM} = 3 \times 10^{-13}$

CMS limit: Br $< 2.4 \times 10^{-9}$ [arXiv:2506.06152]

Used newly developed inclusive dimuon trigger

and CMS Run3 data at $\sqrt{s} = 13.6$ TeV from 2022–2023.



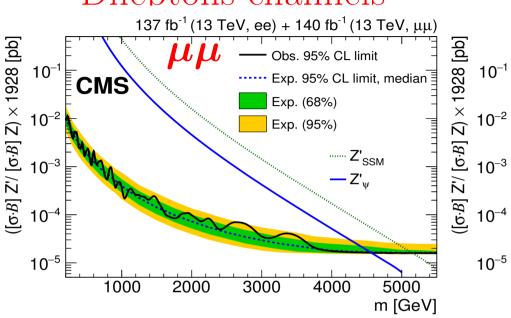


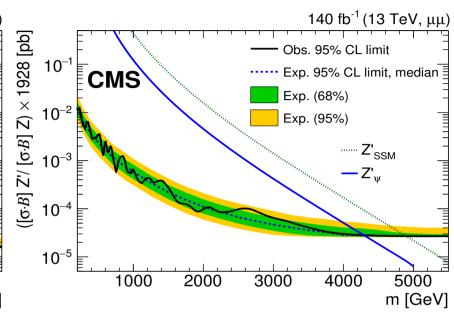
Dilepton Mass Spectrum in Run2 (JHEP 07 (2021) 208)

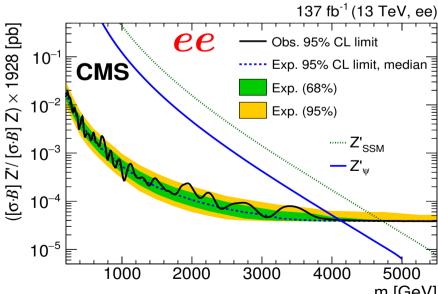
- Offline cut $p_T > 53 \text{ GeV}$
- Single muon trigger $p_T > 50 \,\text{GeV}$ Double electron trigger $E_T > 33 \,\text{GeV}$.
- Good Data / MC agreement,
 No obvious bumps seen.
- To impose mass limits, we normalize to $\sigma(Z)$:

$$R_{\sigma} = \frac{\sigma(Z' \to \ell^{+}\ell^{-})}{\sigma(Z \to \ell^{+}\ell^{-})} = \frac{N(Z')}{N(Z)} \times \frac{A(Z)}{A(Z')} \times \frac{\varepsilon(Z)}{\varepsilon(Z')}$$

- Removed luminosity uncertainty, other systematic effects reduced.
- Existence (or lack) of a signal is established by performing unbinned maximum likelihood fits to the observed spectrum.
- Largest mass found: 3.3 TeV $(\mu^+\mu^-)$, 3.5 TeV (ee)




Z' Mass Limits (JHEP 07 (2021) 208)



Combined uu + ee

Limits at 95% C.L. on the ratio of Z' cross section to Z cross section, assuming a narrow resonance

The limit exclude a $Z'_{\rm SSM}$ with a mass less than 5.15 TeV and Z'_{ψ} with a mass less than 4.56 TeV. For $\mu^+\mu^- - 4.89$ (Z'_{SSM}) and 4.29 TeV (Z'_{ψ}).

For $ee - 4.72 \ (Z'_{SSM})$ and $4.11 \ \text{TeV} \ (Z'_{\psi})$.

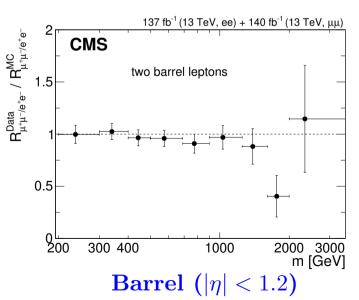
m [Gev] Generalization for many other models was done.

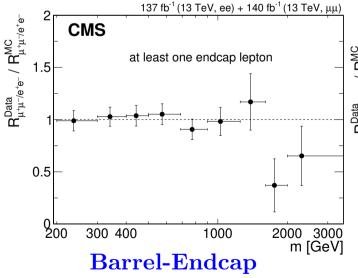
Test of Lepton Flavor Universality (JHEP 07 (2021) 208)

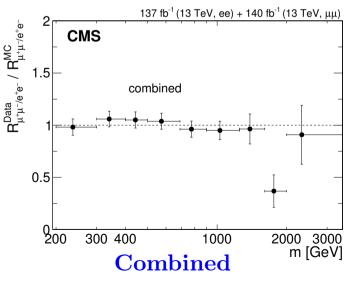
Lepton flavor universality was tested for the first time at the TeV scale

by comparing $\mu^+\mu^-$ and e^+e^- mass spectra: $R_{\mu^+\mu^-/e^+e^-} = \frac{d\sigma(\mu^+\mu^-)/dm_{\ell\ell}}{d\sigma(e^+e^-)/dm_{\ell\ell}}$

No significant deviations from SM observed.

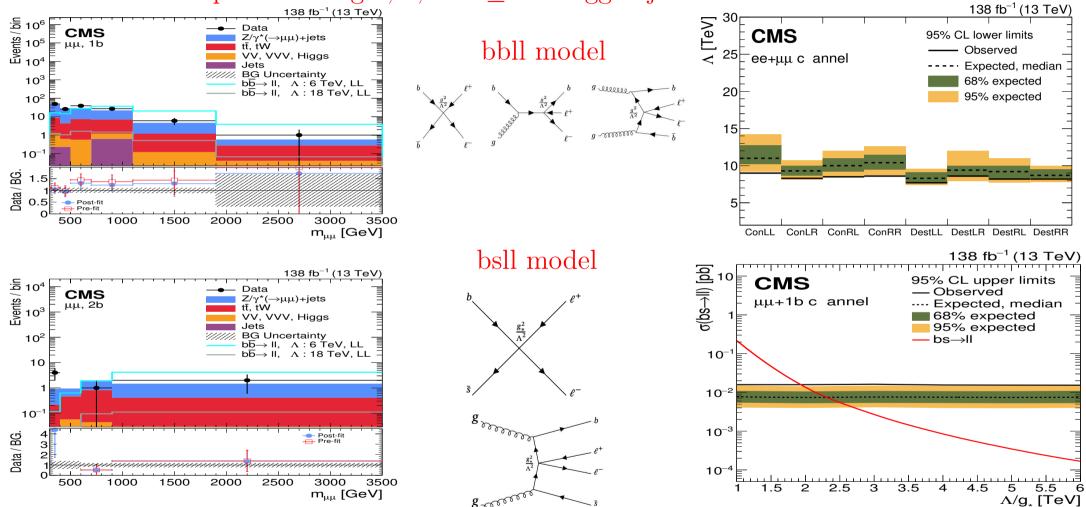

At very high masses, the statistical uncertainties are large.


Here, some deviations from unity are observed, caused


by the slight excess in the dielectron channel.

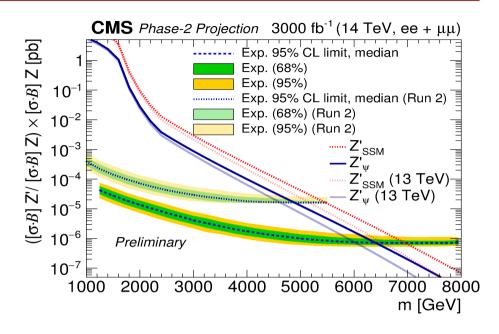
A χ^2 test for the mass range above 400 GeV is performed:

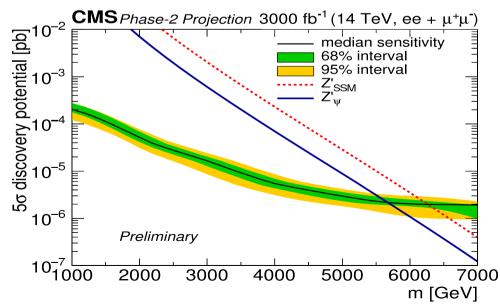
 $\chi^2/\text{dof} = 11.2/7 \text{ and } 9.4/7 \text{ for } m > 400 \,\text{GeV}.$



Nonresonant new physics in high-mass dilepton events in association with b-tagged jets (arXiv:2506.13565)

Lower limits on the energy scale Λ of 6.9 to 9.0 TeV in the bbll model, depending on model parameters, and on the ratio of energy scale and coupling Λ/g^* of 2.0 to 2.6 TeV in the bsll model.


Results for bsll model represent the most stringent limits on this model to date.


Projections for $Z' \to \mu \mu$ at $\sqrt{s} = 14$ TeV (FTR-21-005)

Projections for limits on dimuon masses and on cross sections at $\sqrt{s} = 14$ TeV at $\int L dt = 3000$ fb⁻¹ is ~ 7 TeV for SSM model.

Discovery with 5 σ significance can be made up to mass of ~ 6.3 TeV for SSM model.

Conclusions

- Run1+Run2 ($\int L dt \approx 26 + 140 \text{ fb}^{-1}$) have provided lots of data to analyze. New energy ranges have been studied.
- This enabled us to better study the Standard Model physics, and to obtain limits for the New Physics.
 - E.g. for the benchmark SSM model the mass limits reached 5.15 TeV and for the HL LHC it is expected to reach 7 TeV.
- Integrated luminosity in Run 3 with $\sqrt{s} = 13.6$ GeV is already twice larger than in Run 2.
- Study of new signals and more analyses are coming.

CMS Publications:

http://cms-results.web.cern.ch/cms-results/public-results/publications/