Flavor composition of supernova neutrinos

Phys.Rev.D 111 (2025) 10, 10 (arXiv:2403.14762)

Yago Porto (ABC Federal University, Brazil)
*On the move to TU Munich

Crab Nebula (Messier I/M I/NGC 1952)

Lomonosov Conference (08/25/2025)

Outline

- Supernova mechanism & neutrino emission: core collapse, bounce, and neutrinos as the main energy channel.
- Flavor evolution across emission phases: burst, accretion, and cooling.
- Collective effects ($\nu \nu$ interactions): Fast and slow conversions introduce uncertainties in SN dynamics and flavor outcome.
- Standard matter effects & trajectory averaging constrain the observable flavor mix at Earth.

Supernovae and neutrinos

- 99% of the gravitational binding energy is emitted as neutrinos ($\sim 10^{53}$ erg).
- ~1% goes into the kinetic energy of the ejecta.
- ~0.01% is released in photons (the visible supernova).

Supernovae and neutrinos

- Robust signal (independent of SN mass/EoS).
- Clean probe of new physics (e.g. scalar NSI)

arXiv: 2508.16558

Observation of the ν_e burst can enhance sensitivity to scalar NSI (see also Peter Denton's talk).

- Strong dependence on mass, EoS, and dynamics.
- Possible onset of collective effects.
- Flavor composition uncertain.

- Sensitive to EoS and SN mass → significant model dependence.
- Collective effects
 expected to develop
 and impact SN
 dynamics.
- Flavor composition uncertain.

SNI987A: the first SN seen in neutrinos

- Galactic supernovae (~10 kpc) are rare: about I-2 per century.
- SN1987A: first naked-eye SN since Kepler (1604).
- Progenitor: Sanduleak 69202 in the Large Magellanic Cloud, 51 kpc away.
- Detected via neutrinos by Kamiokande-II, IMB, and Baksan.
- Total: ~24 detected events out of ~10⁵⁸ emitted.
- Consistent with the basic SN neutrino paradigm (energy, timescale, luminosity).

Janka, Handbook of Supernovae (2017)

Where flavor conversion happens in a SN

- Current picture: local neutrino neutrino interactions dominate.
- Outcome depends on details we may never access directly.
- Potentially crucial for SN physics (heating, Y_e , nucleosynthesis).
- Theory still debated: mean-field vs. many-body, role of entanglement.

Collective neutrino oscillations

- **Slow conversion:** Collective oscillations driven by $\nu \nu$ refraction and vacuum frequency ($\Delta m^2/2E$). Produce spectral swaps/splits. Occurs ~100–1000 km above the ν -sphere.
- **Fast conversion:** Flavor instabilities triggered by electron lepton number (ELN) angular crossings; evolve on ns/meter scales, independent of $\Delta m^2/2E$. Occurs very close to the ν -sphere, \lesssim 10–100 km.

Our approach: tracing flavor evolution to Earth

Our approach

• In the **boundary** between collective and standard matter effects, each neutrino ν_i has its state (in the flavor basis) described by:

$$\rho_{\nu_i} = \begin{pmatrix} |\alpha_i|^2 & 0 & 0\\ 0 & |\beta_i|^2 & \beta_i \gamma_i^* e^{i\phi_i}\\ 0 & \beta_i^* \gamma_i e_i^{-i\phi_i} & |\gamma_i|^2 \end{pmatrix}$$

• In a millisecond, $10^{12} \nu_i$'s reach the Earth. If we imagine the (average) ensemble of these ν_i 's in the boundary, we have:

$$\rho_{\nu} = \frac{1}{10^{12}} \sum_{i=1}^{10^{12}} \begin{pmatrix} |\alpha_{i}|^{2} & 0 & 0\\ 0 & |\beta_{i}|^{2} & \beta_{i} \gamma_{i}^{*} e^{i\phi_{i}}\\ 0 & \beta_{i}^{*} \gamma_{i} e_{i}^{-i\phi_{i}} & |\gamma_{i}|^{2} \end{pmatrix}$$

The off-diagonal terms, encoding phase coherence, most likely damp out →
effectively leaving a diagonal ensemble.

Our approach: exploiting μ – τ symmetry

• Since μ and τ leptons are absent in the SN environment, the μ – τ sector is symmetric, and the choice of basis is arbitrary.

$$ho_{
u}^{B} = rac{1}{N} \sum_{k=1}^{N} \left(egin{array}{ccc} lpha_{k}^{2} & 0 & 0 \ 0 & eta_{k}'^{2} & eta_{k}' \gamma_{k}' e^{-i\phi_{k}'} \ 0 & eta_{k}' \gamma_{k}' e^{i\phi_{k}'} & \gamma_{k}'^{2} \end{array}
ight)$$

• Assume that the off-diagonal terms vanish in an arbitrary basis:

$$\frac{1}{N} \sum_{k=1}^{N} \beta_k' \gamma_k' e^{i\phi_k'} \approx 0.$$

In this case, after rotating to the flavor basis, we obtain

$$\rho_{\nu}^{F} = \frac{1}{N} \sum_{k=1}^{N} \begin{pmatrix} \alpha_{k}^{2} & 0 & 0 \\ 0 & c_{\theta}^{2} \beta_{k}^{\prime 2} + s_{\theta}^{2} \gamma_{k}^{\prime 2} & \frac{1}{2} s_{2\theta} (\beta_{k}^{\prime 2} - \gamma_{k}^{\prime 2}) \\ 0 & \frac{1}{2} s_{2\theta} (\beta_{k}^{\prime 2} - \gamma_{k}^{\prime 2}) & s_{\theta}^{2} \beta_{k}^{\prime 2} + c_{\theta}^{2} \gamma_{k}^{\prime 2} \end{pmatrix}$$

• $s_{2\theta}$ parametrizes the $\mu'-\tau'$ mixing rotation, and $X\equiv \frac{1}{N}\sum_{k=1}^N\left(\beta_k^{'2}-\gamma_k^{'2}\right)$ encodes the $\mu'-\tau'$ population asymmetry.

Our approach: exploiting μ – τ symmetry

Assume $s_{2\theta} \in [-1,1]$ and $X \equiv \frac{1}{N} \sum_{k=1}^N \left(\beta_k^{'2} - \gamma_k^{'2}\right) \in [-1,1]$ are uniformly distributed. Then the product $s_{2\theta}X$ is most likely close to zero.

• Thus, even if decoherence occurs in a rotated basis, coherence in the flavor basis is most likely suppressed.

Our approach: ensemble → flavor ratios

 Assuming off-diagonal terms to vanish, we can write the state of the ensemble at the boundary as:

$$\rho_{\nu} = \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right)$$

• Where
$$a = \frac{\sum_i \alpha_i}{10^{12}}$$
, $b = \frac{\sum_i \beta_i}{10^{12}}$ and $c = \frac{\sum_i \gamma_i}{10^{12}}$.

• Thus, the ensemble can be summarized by the flavor ratios (a, b, c).

Normal Ordering (NO)

• Assuming NO and adiabatic propagation, we have $\nu_e
ightarrow \nu_3$:

$$(1,0,0)_{SN} \to \left(|U_{e3}|^2, |U_{\mu 3}|^2, |U_{\tau 3}|^2 \right)_{\oplus}.$$

Conversely, for the non-electron flavors,

$$(0,1,0)_{SN}$$
 or $(0,0,1)_{SN} \rightarrow$

$$\frac{1}{2} \left(|U_{e1}|^2 + |U_{e2}|^2, |U_{\mu 1}|^2 + |U_{\mu 2}|^2, |U_{\tau 1}|^2 + |U_{\tau 2}|^2 \right)_{\oplus}.$$

• For any initial combination $(a,b,c)_{SN}$, we obtain on Earth the ν_e fraction:

$$f_{\nu_e}^{NO} = a |U_{e3}|^2 + b \frac{|U_{e1}|^2 + |U_{e2}|^2}{2} + c \frac{|U_{e1}|^2 + |U_{e2}|^2}{2}.$$

• From the unitarity of the PMNS matrix and a+b+c=1, it simplifies to

$$f_{\nu_e}^{NO} = \frac{1}{2} \left(1 - |U_{e3}|^2 \right) + \frac{a}{2} \left(3 |U_{e3}|^2 - 1 \right) ,$$

• Adopting $|U_{e3}|^2 \approx 0.02 \ll 1$, we obtain

$$f_{\nu_e}^{NO} \approx \frac{1-a}{2} \lesssim 0.5_{-0.08}^{+0.06}$$

Inverted Ordering (IO)

- For IO, it is analogous to the NO case, but with $U_{e3} \leftrightarrow U_{e2}$

$$f_{\nu_e}^{IO} = \frac{1}{2} \left(1 - |U_{e2}|^2 \right) + \frac{a}{2} \left(3 |U_{e2}|^2 - 1 \right) .$$

• Assuming $|U_{e2}|^2 \approx 1/3$, we have

$$f_{\nu_e}^{IO} \approx 1/3^{+0.1}_{-0.1}$$
.

Consistent with flavor equipartition.

Shock waves

- Shock waves can disrupt the SN envelope and affect adiabaticity of the H resonance early on $(U_{e3} \leftrightarrow U_{e2})$.
- For NO: adiabaticity is broken,

$$f_{\nu_e}^{NO}(\text{non-ad }H) \approx \frac{1}{3}$$
.

For IO: unaffected, remains

$$f_{\nu_e}^{IO}(\text{non-ad }H) \approx \frac{1}{3}$$
.

Shock wave propagation and revival (Janka et al. 2012)

Results

- Red regions: Flavor composition under adiabatic evolution.
- **Maroon regions:** Flavor composition under non-adiabatic transitions (H-resonance + shock wave).
- **Pink regions:** Flavor composition if if the $\mu \tau$ symmetry is broken.

Conclusion

- We constrain the SN neutrino flavor content with only basic, robust assumptions.
- Our results are robust: independent of time evolution, emission direction, or uncertain SN details.
- A nearby supernova will let us test these predictions directly.

Thank you!