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Outline

Supernova mechanism & neutrino emission: core collapse, bounce, and
neutrinos as the main energy channel.

Flavor evolution across emission phases: burst, accretion, and cooling.

Collective effects (v — v interactions): Fast and slow conversions introduce
uncertainties in SN dynamics and flavor outcome.

Standard matter effects & trajectory averaging constrain the observable
flavor mix at Earth.



Supernovae and neutrinos
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e 99% of the gravitational binding energy is emitted as neutrinos ( ~ 10”3 erg).
e ~1% goes into the kinetic energy of the ejecta.

e ~0.01% is released in photons (the visible supernova).



Supernovae and neutrinos
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Robust signal (independent
of SN mass/EoS).

Clean probe of new physics
(e.g. scalar NSI)

arXiv: 2508.16558

Observation of the v, burst
can enhance sensitivity to
scalar NSI (see also Peter
Denton’s talk).
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Strong dependence on
mass, EoS, and dynamics.

e Possible onset of
collective effects.

- Flavor composition
uncertain.
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 Sensitive to EoS and
SN mass — significant
model dependence.

- Collective effects
expected to develop
and impact SN
dynamics.

- Flavor composition
uncertain.



SN 1987A: the first SN seen in heutrinos

Galactic supernovae (~10 kpc) are rare: % 10 £
about -2 per century. = 30
3 20

SN 1987A: first naked-eye SN since 3
Kepler (1604). g 10
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Where flavor conversion happens in a SN

Supernova envelope  Current picture: local neutrino—
neutrino interactions dominate.

« Outcome depends on details we
may never access directly.

Fast self-induced
conversions Slow self-induced

conversions

* Potentially crucial for SN physics

i , . (heating, Y, nucleosynthesis).
~80 km ~200 km ~1500 km

v-sphere

MSW * Theory still debated: mean-field vs.
resonances
many-body, role of entanglement.

Tamborra and Shalgar,
arXiv:2011.01948



Collective neutrino oscillations

* Slow conversion: Collective oscillations driven by v — v refraction and vacuum

frequency (Am?/2E). Produce spectral swaps/splits. Occurs ~100—1000 km above the

v-sphere.

* Fast conversion: Flavor instabilities triggered by electron lepton number (ELN)

angular crossings; evolve on ns/meter scales, independent of Am?/2E. Occurs very

close to the v-sphere, S10-100 km.
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Our approach: tracing flavor evolution to Earth
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Our approach

* In the boundary between collective and standard matter effects, each neutrino
v; has its state (in the flavor basis) described by:
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+ In a millisecond, 10'% s reach the Earth. If we imagine the (average) ensemble of
these ;s in the boundary, we have:
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* The off-diagonal terms, encoding phase coherence, most likely damp out —
effectively leaving a diagonal ensemble.



Our approach: exploiting yi—t symmetry

Since y and 7 leptons are absent in the SN environment, the p—t sector is
symmetric, and the choice of basis is arbitrary.
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Assume that the off-diagonal terms vanish in an arbitrary basis:
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In this case, after rotating to the flavor basis, we obtain
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S»g parametrizes the p'—t" mixing rotation,and X = — Z (ﬂkz — ykz) encodes the
k=1

u'—1’ population asymmetry.



Our approach: exploiting yi—t symmetry
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distributed. Then the product s,,X is most likely close to zero.
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* Thus, even if decoherence occurs in a rotated basis, coherence in the flavor basis is
most likely suppressed.



Our approach: ensemble — flavor ratios

Assuming off-diagonal terms to vanish, we can write the state of the ensemble at
the boundary as:
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Thus, the ensemble can be summarized by the flavor ratios (a, b, ¢).



Normal Ordering (NO)

Assuming NO and adiabatic propagation, we have v, — v;:

(1,0,0)s5 = ([Vesl®, [Vl Uz _ -
Conversely, for the non-electron flavors,
(0,1,0)SN or (0,0,1)5_]\] —
1
5 (|U61|2 + |U62|2 ) |Uul|2 + |Uu2|2 ) |UT1|2 + |UT2|2)€B .

For any initial combination (a, b, ¢)qy, we obtain on Earth the v, fraction:
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From the unitarity of the PMNS matrix and a + b + ¢ = 1, it simplifies to
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Adopting | U ;|* ~ 0.02 < 1, we obtain
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Inverted Ordering (10)

« For IO, it is analogous to the NO case, but with U,; <> U,,

1,2 = % (1 — |Ue2|2) + % (3 Ugo|® — 1)

. Assuming | U, |* = 1/3, we have

f ~ 1/3%01.

« Consistent with flavor equipartition.

Normal Ordering (e¢=0) Inverted Ordering (e¢£=0)




Shock waves

Gravitational instability
of stellar core

* Shock waves can disrupt the SN
envelope and affect adiabaticity of
the H resonance early on

(Ue3 < UeZ)'

* For NO: adiabaticity is broken,

1
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* For |O: unaffected, remains
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Explosion
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Explosion and
nucleosynthesis
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Neutrino-

Proto-neutron star driven “wind”

Shock wave propagation and revival (Janka et al. 2012)



Results
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 Red regions: Flavor composition under adiabatic evolution.

 Maroon regions: Flavor composition under non-adiabatic transitions (H-resonance
+ shock wave).

 Pink regions: Flavor composition if if the 4 — 7 symmetry is broken.



Conclusion

*  We constrain the SN neutrino flavor content with only basic, robust assumptions.

* Our results are robust: independent of time evolution, emission direction, or uncertain
SN details.

* A nearby supernova will let us test these predictions directly.



Thank you!



