New results on gauge field decomposition in SU(3) gluodynamics

Vitaly Bornyakov^{a,b}, Ilya Kudrov^a, Vladimir Goy^b

a NRC "Kurchatov Institute" - IHEP, Protvino
 b Pacific Quantum Center, Far Eastern Federal University, Vladivostok

"TWENTY- SECOND LOMONOSOV CONFERENCE ON ELEMENTARY PARTICLE PHYSICS"

MSU, Moscow, 25.08.2025

Plan

- Introduction (Lattice, Confinement, MA gauge)
- Obecomposition of the gauge field $A_{\mu}(x) = A_{\mu}^{mon} + A_{\mu}^{mod}$
- **3** Decomposition of the static potential $V(r) = V_{mon}(r) + V_{mod}(r)$
- Conclusions and Outlook

Lattice regularization

$$\begin{split} &U_{\mu}(x) = P \mathrm{exp} \bigg(i \int_{C_{x,x+\hat{\mu}}} A_{\mu}(s) ds \bigg) \approx 1 + i a A_{\mu}(x) + O(a^2) \\ &S_G = \beta \sum_{x,\mu < \nu} (1 - \frac{1}{N} \mathrm{Re} \mathrm{Tr} U_{\mu\nu}) = a^4 \bigg(\frac{\beta}{2N_c} \sum_{x,\mu < \nu} \mathrm{Tr} [F_{\mu\nu}^2] + \mathscr{O}(a^2) \bigg) \,, \quad \beta = \frac{2N_c}{g^2} \end{split}$$

Lattice regularization, cont.

$$\langle O \rangle = \frac{1}{Z} \int \mathscr{D} U e^{-S_G(U)} O(U)$$

There is no problem of gauge fixing when O(U) is gauge invariant

Examples of gauge non-invariant observables:

- Gluon, quark, ghost propagators
 (needed to compare with, e.g. DSE approach)
- Various projected observables in MAG and center gauges (needed to study respective scenarios of confinement)

Confinement problem

Quark confinement:

- is confirmed experimentally and in lattice calculations
- linear dependence of static quarks interaction potential on a distance between them
- hasn't been proven analytically so far
- one of the approaches to describe QCD vacuum as a dual superconductor, t'Hooft, 1976, Mandelstam, 1976

Maximal Abelian gauge in SU(3) gluodynamics

Suggested by t'Hooft, 1981 to define color-magnetic monopoles

Gauge fixing functional (breaks SU(3) to $U(1)^2$)

$$F_{MAG} = \frac{1}{12V} \int d^4x \sum_{\mu=1}^4 \sum_{a \neq 3,8} (A^a_{\mu}(x))^2$$

$$f^{a}(A) = \sum_{b \neq 3.8} (\partial_{\mu} \delta^{ab} - g f^{ab3} A_{\mu}^{3} - g f^{ab8} A_{\mu}^{8}) A_{\mu}^{b} = 0, \quad a \neq 3, 8$$

Gauge fixing functional in lattice regularization:

$$F_{MAG}^{latt} = 1 - \frac{1}{12V} \sum_{x,\mu,a=3.8} \operatorname{Tr}\{U_{\mu}(x)\lambda_{a}U_{\mu}^{\dagger}(x)\lambda_{a}\} \approx a^{2}F_{MAG}$$

Color-magnetic monopoles

In the Higgs model the t'Hooft-Polyakov monopole has a form of a Dirac monopole in a unitary gauge. In $SU(N_c)$ gluodynamics MA gauge plays this role. We search for nonabelian color-magnetic monopoles making three steps (Kronfeld, Laursen, Schierholz, Wiese, 1987)

- to fix MA gauge (problem of Gribov copies)
- to make Abelian projection (decomposition)

$$A_{\mu}(x) = \sum_{a \neq 3,8} A_{\mu}^{a}(x) \lambda_{a} + A_{\mu}^{3}(x) \lambda_{3} + A_{\mu}^{8}(x) \lambda_{8} \equiv A_{\mu}^{offd}(x) + A_{\mu}^{abel}(x)$$

• to use the Abelian component $A_{\mu}^{abel}(x)$ for locatation of Dirac monopoles via procedure introduced for compact U(1) in DeGrand, Toussaint, 1980

Color-magnetic monopoles, cont.

Abelian lattice gauge field is defined by diagonal matrix $u_{\mu}(x) \in U(1) \times U(1)$

$$u_{\mu}^{aa}(x) = e^{i\theta_{\mu}^{a}(x)}, \quad \sum_{a} \theta_{\mu}^{a}(x) = 2\pi n$$

$$\theta_{\mu\nu}^{a}(x) = \partial_{\mu}\theta_{\nu}^{a}(x) - \partial_{\nu}\theta_{\mu}^{a}(x)$$

$$\theta_{\mu\nu}^{a}(x) = \bar{\theta}_{\mu\nu}^{a}(x) + 2\pi m_{\mu\nu}^{a}(x), \quad \bar{\theta}_{\mu\nu}^{a}(x) \in (-\pi, \pi)$$

color-magnetic current :

$$k_{\mu}^{a}(x) = \frac{1}{2} \varepsilon_{\mu\nu\alpha\beta} \, \partial_{\nu} m_{\alpha\beta}^{a} \,, \qquad \qquad \partial_{\mu} k_{\mu}^{a}(x) = 0$$

A decomposition of a gauge field in MAG

Abelian field can be further decomposed into 'monopole' and 'photon' components (names are borrowed from compact U(1))

$$A_{\mu}^{abel}(x) = A_{\mu}^{mon}(x) + A_{\mu}^{phot}(x)$$
 $aA_{\mu}^{a,mon}(x) \equiv heta_{\mu}^{a,mon} = \sum_{v} D(x-y) \partial_{\nu} m_{\mu,\nu}(y)$

The following decomposition was introduced in Bornyakov, Polikarpov, Schierholz, Suzuki, Syritsyn, 2006

$$A_{\mu}(x) = A_{\mu}^{mod}(x) + A_{\mu}^{mon}(x)$$
(non-confining) (confining)

$$A_{\mu}^{mod}(x) = A_{\mu}^{offd}(x) + A_{\mu}^{phot}(x)$$

Static quark potential

$$W(r,t) = rac{1}{3} \operatorname{Tr} P \exp \left(i \oint_C A_\mu(x) dx_\mu
ight)$$
 $ightarrow rac{1}{3} \operatorname{Re} \operatorname{Tr} \prod_{I \in C} U_I$
 $\langle W(r,t)
angle = C_0 e^{-tV(r)} + C_1 e^{-tE_1(r)} + ...$
 $aV(r) = \lim_{t o \infty} \log rac{\langle W(r,t)
angle}{\langle W(r,t+a)
angle}$

We measure three types of $\langle W(r,t) \rangle$:

- for nonabelian gauge field $A_{\mu}(x)$,
- for monopole component $A^{mon}_{\iota\iota}(x)$,
- for modified component $A^{mod}(x)$

Decomposition of static potential V(r) in SU(2) gluodynamics and in SU(2) QCD

First results on properties of this decomposition: Bornyakov, Polikarpov, Schierhilz, Suzuki, Syritsyn, 2006 It was found that

$$V(r) \approx V_{mon}(r) + V_{mod}(r)$$

We demonstrated (Bornyakov, Kudrov, Rogalyov, 2021) that in SU(2) gluodynamics the precision of this relation improves when lattice spacing a is decreasing (i.e. in the continuum limit)

Furthermore, we observed this decomposition in lattice SU(2) gluodynamics with improved lattice action (universality) and in lattice $N_c = 2$ QCD.

Results in SU(2) QCD

 $V_{mon}(r) + V_{mod}(r)$ vs. physical static potential V(r) Bornyakov, Kudrov, Rogalyov, 2021

Interpretation of this result for V(r):

 $A_{\mu}^{mon}(x)$ is responsible for the linear part of V(r), i.e. it is a confining component,

 $A_{\mu}^{mod}(x)$ is responsible for the perturbative part at small r and for hadron string fluctuations at large r, i.e. it is a non-confining component

Decomposition of static potential in SU(3) gluodynamics

 $V_{mon}(r) + V_{mod}(r)$ is compared with V(r), results for a few values of lattice spacing $a \in [0.06, 0.09]$ fm With 'global' minima of F_{MAG} we find agreement at small r and disagreement at large r Disagreement comes from low string tension in $V_{mon}(r)$

Decomposition of static potential in SU(3) gluodynamics, cont.

With **randomly chosen minima** (Gribov copies) we find agreement at all r

This is our main result

Gribov copies

At one value of a we generated 100 copies fixed to MAG for every independent configuration $\{U_{\mu}(x)\}$. This figure shows probability to get particular value of the gauge fixing functional F_{MAG}^{latt} . The distribution is of the gaussian form, position of its maximum does not depend on the lattice size for $N_s > 16$. The result implies that in the limit $N_s \to \infty$ all Gribiv copies have same value of F_{MAG}^{latt}

Gribov copies

The distribution of the monopole density. It is also of a gaussian form, position of its maximum does not depend on the lattice size for $N_s > 16$. The result gives further support to assumption that in the limit $N_s \to \infty$ Gribiv copies effects disappear.

Conclusions

In our study of the gauge field decomposition

$$A_{\mu}(x) = A_{\mu}^{mon}(x) + A_{\mu}^{mod}(x) \tag{1}$$

in MA gauge of SU(3) gluodynamics we observed that Gribov copies exist which produce a numerically precise decomposition for the static potential

$$V(r) = V_{mon}(r) + V_{mod}(r)$$
 (2)

- Our results indicate that the Gribov copies effect disappears in the infinite volume limit if one averages over all Gribov coplies.
- As a byproduct, we obtained that $\sigma_{abel} \approx \sigma$ (Abelian dominance, long standing problem) with high precision independent of the volume.

Conclusions, cont.

Future plans:

- We found in SU(2) gluodynamics that at T>0 the decomposition works for the free energy $F_{q\bar{q}}(r)$ of static quark-antiquark pair. We will extend this study to SU(3) case.
- **②** To compute the gauge field propagators for A^{mon} and A^{mod} including mixed propagator
- ullet To compute the quark propagator for A^{mon} and A^{mod}
- to study properties of this gauge field decomposition in QCD (i.e. with quarks)
- to study decomposition for other observables, in particular, for hadron spectrum