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To-do list for QED

For modern and future experiments we need new higher-order
calculations in QED

Compute 2-loop QED radiative corrections to differential
distributions of key processes: Bhabha scattering, muon decay,
e+e− → µ+µ−,e+e− → π+π−, e+e− → ZH etc.

Estimate higher-order contributions within some approximations

Account for interplay with QCD and electroweak effects

Match with parton showers at N?LO

Construct reliable Monte Carlo codes
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Perturbative QED (I)
Fortunately, in our case the general perturbation theory can be applied:

α

2π
≈ 1.2 · 10−3,

( α

2π

)2
≈ 1.4 · 10−6

Moreover, other effects: hadronic vacuum polarization, (electro)weak
contributions, hadronic pair emission, etc. are small in, e.g., Bhabha
scattering and can be treated one-by-one separately

Nevertheless, there are some enhancement factors:

1) First of all, the large logarithm L ≡ ln Λ2

m2
e

where Λ2 ∼ Q2 is the
momentum transferred squared, e.g., L(Λ = 1 GeV) ≈ 16 and
L(Λ = MZ) ≈ 24.

2) The energy region at the Z boson peak (s ∼ M2
Z) requires a special

treatment since factor MZ/ΓZ appears in the annihilation channel
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Perturbative QED (II)

Methods of resummation of higher-order QED corrections
Resummation of vacuum polarization corrections (geometric
series): α(0) → α(µ2

F)

Yennie–Frautschi–Suura (YFS) soft photon exponentiation and
its extensions, see, e.g., PHOTOS
Leading logarithms via QED structure functions or QED PDFs
(V.Gribov, L.Lipatov 1972;
E.Kuraev and V.Fadin 1985;
A. De Rujula, R.Petronzio, A.Savoy-Navarro 1979)

N.B. Resummation of real photon radiation is good only for sufficiently
inclusive observables. . .
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Leading and next-to-leading logs in QED
The QED leading (LO) logarithmic corrections

∼
( α

2π

)n
lnn s

m2
e

were relevant for LEP measurements of Bhabha, e+e− → µ+µ− etc.
for n ≤ 3 since ln(M2

Z/m2
e ) ≈ 24

NLO contributions
∼

( α

2π

)n
lnn−1 s

m2
e

with at least n = 3, 4, 5 are required for future e+e− colliders

In the collinear approximation we can get them within
the NLO QED structure function formalism
• F.A.Berends, W.L. van Neerven, G.J.Burgers, NPB’1988
• A.A., K.Melnikov, PRD’2002; A.A. JHEP’2003
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QED NLO DGLAP evolution equations

Dba

(
x,

µ2
R

µ2
F

)
= δabδ(1 − x) +

∑
c=e,γ,̄e

µ2
F∫

µ2
R

dt
t

1∫
x

dy
y

Pbc(y, t)Dca

(
x
y
,
µ2

R
t

)

a, b, c are massless partons (∼ e±, γ)

µF is a factorization (energy) scale

µR is a renormalization (energy) scale

Dba is a parton density function (PDF)

Pbc is a splitting function or kernel of the DGLAP equation

N.B. In QED µR = me ≈ 0 is the natural choice well motivated by
known analytic results
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QED splitting functions
The perturbative splitting functions are

Pba(x, ᾱ(t)) =
ᾱ(t)
2π

P(0)
ba (x) +

(
ᾱ(t)
2π

)2

P(1)
ba (x) +O(α3)

e.g. P(0)
ee (x) =

[
1 + x2

1 − x

]
+

They come from direct loop calculations, see, review “Partons in QCD”
by G. Altarelli, e.g., P(1)

ba (x) comes from 2-loop calculations

The splitting functions can be obtained by reduction of the ones known
in QCD to the abelian case of QED

ᾱ(t) is the QED running coupling constant in the MS scheme

N.B. Factorization in ᾱ(t)× Pba(x) is not unique
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Iterative solution

The NLO “electron in electron” PDF reads [A.A., U.Voznaya, JPG 2023]

Dee(x, µF, me) = δ(1 − x) +
α

2π
LP(0)

ee (x) +
α

2π
d(1)

ee (x, me, me)

+

(
α

2π

)2
L2

( 1

2
P(0)

ee ⊗ P(0)
ee (x) +

1

3
P(0)

ee (x) +
1

2
P(0)

eγ ⊗ P(0)
γe (x)

)
+

(
α

2π

)2
L
(

P(0)
eγ ⊗ d(1)

γe (x, me, me) + P(0)
ee ⊗ d(1)

ee (x, me, me) −
10

9
P(0)

ee (x) + P(1)
ee (x)

)
+

(
α

2π

)3
L3

( 1

6
P(0)

ee ⊗ P(0)
ee ⊗ P(0)

ee (x) +
1

6
P(0)

eγ ⊗ P(0)
γγ ⊗ P(0)

γe (x) + . . .

)
+

(
α

2π

)3
L2

(
P(0)

ee ⊗ P(1)
ee (x) + P(0)

ee ⊗ P(0)
ee ⊗ d(1)

ee (x, me, me) +
1

3
P(1)

ee (x) −
10

9
P(0)

ee ⊗ P(0)
ee (x) + . . .

)
+O(α

2L0
, α

3L1
) + . . .

The large logarithm L ≡ ln
µ2

F
µ2

R
with factorization scale µ2

F ∼ s or ∼ −t; and
renormalization scale µR = me. Here α ≡ α(0).

A deviation from [M.Skrzypek 1992] is found in singlet-channel contribution
in O(α3L3)
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Running coupling constant

Compare QED-like

ᾱ(t) = α

{
1 +

α

2π

(
2
3

L − 10
9

)
+
( α

2π

)2
(

4
9

L2 − 13
27

L + . . .

)
+ . . .

and QCD-like

ᾱ(t) =
4π

β0 ln(t/Λ2)

[
1 − β1

β2
0

ln[ln(t/Λ2)]

ln(t/Λ2)
+ . . .

]
Note that “−10/9” could have been hidden into Λ

In QED β0 = −4/3 and β1 = −4

N.B. Naive change α(0) → α(µ2
F) in Dee(x, µF,me) does not work!
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O(α) matching

The expansion of the master formula for ISR gives

dσ(1)
e ē→γ∗ =

α

2π

{
2LP(0)

ee ⊗ dσ(0)
e ē→γ∗ + 2d(1)

ee ⊗ dσ(0)
e ē→γ∗

}
+ d σ̄(1)

e ē→γ∗

We know the massive dσ(1) and massless d σ̄(1) (me ≡ 0 with MS subtraction)
results in O(α) ⇒

d(1)
ee =

[
1 + z2

1 − z

(
ln

µ2
R

m2
e
− 1 − ln(1 − z)

)]
+

, P(0)
ee (z) =

[
1 + z2

1 − z

]
+

, L = ln
µ2

F

µ2
R

Scheme dependence comes from here

Factorization and renormalization scale dependence is also from here

N.B. "Massification procedure” [McMule Coll.]
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QED NLO master formula

The NLO Bhabha cross section
reads

dσ =
∑

a,b,c,d=e,̄e,γ

∫ 1

z̄1

dz1

∫ 1

z̄2

dz2Dstr
ae (z1)Dstr

b̄e (z2)

×
[

dσ(0)
ab→cd(z1, z2) + dσ̄(1)

ab→cd(z1, z2)

]
×
∫ 1

ȳ1

dy1

Y1

∫ 1

ȳ2

dy2

Y2
Dfrg

ec

(
y1

Y1

)
Dfrg

ēd

(
y2

Y2

)
+O

(
αnLn−2,

m2
e

s

)
α2L2 and α2L1 terms are completely reproduced [A.A., E.Scherbakova,
JETP Lett. 2006; PLB 2008]
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Factorization scale choice

The final result of calculation in all orders in α and L would not depend on µF

But for a fixed-order result for an observable does depend on µF

Many different methods for choosing µF were proposed:

CSS — Conventional Scale Setting (µF = hard momentum transfer)

FAC — Fastest Apparent Convergence [G. Grunberg]

PMS — Principle of Minimal Sensitivity [P.M. Stevenson]

BLM — Brodsky-Lepage-Mackenzie (absorb β0-dependent terms)

PMC — Principle of Maximal Conformality [S.Brodsky et al.]

. . .
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Factorization scale choice — Bhabha scattering
Let’s look at soft + virtual O

(
α2) RC [A. Penin, PRL’2005,

NPB’2006]: ∆2−loop =
∑

n=0,1,2 Cn ln
n µ2

F
m2

e
=

∑
n=0,1,2 rn
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Factorization scale choice — Bhabha scattering
Let’s look at soft + virtual O

(
α2) RC [A. Penin, PRL’2005,

NPB’2006]: ∆ =
∑

n=0,1,2 Cn ln
n µ2

F
m2

e
=

∑
n=0,1,2 rn
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Factorization scale choice — e+e− → µ+µ−
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Factorization scale — conclusions

The sensitivity to the factorization scale choice is relevant numerically

More higher-order calculations are required to reduce the dependency

The comparison of several concrete schemes shows:

CSS — Conventional Scale Setting (µF = hard momentum transfer) fails

FAC — Fastest Apparent Convergence looks good

PMS — Principle of Minimal Sensitivity looks reasonable

BLM — Brodsky-Lepage-Mackenzie not applicable

PMC — Principle of Maximal Conformality not applicable
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Factorization (subtraction) scheme choice
NLO exponentiation in the MSbar scheme is ambiguous:

explicit solution for Dee(x) in the MS scheme in the limit x → 1 doesn’t match
the (pure photonic) exact solution by Gribov and Lipatov ’1972

D(γ)
ee (x)

∣∣∣∣
x→1

=
β

2
(1 − x)β/2−1

Γ(1 + β/2)
exp

{
β

2

(
3
4
− C

)}
where β = 2α/π(L − 1) and C is the Euler constant.

See also [A.V. Kotikov et al., “αs from DIS data with large x resummation,”
arXiv:2403.13360]

We suggest a DIS-like scheme with the following modification of the NLO
initial condition

d(1)
ee

∣∣∣
MS

=

[
1 + x2

1 − x

(
ln

µ2
R

m2
e
− 1 − ln(1 − x)

)]
+

→ d̃(1)
ee =

[
1 + x2

1 − x
ln

µ2
R

m2
e

]
+

= 0

for mR = me with subsequent modification of σ(1) to preserve the NLO
matching. Fixed-order results for total cross-sections remain unchanged.
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Scale variation test: µF → µF/2, µF × 2
True (∆) shifts and the ones estimated (δ) by factorization scale variation by
factor 2 in O(α2) for µF =

√
s

LO NLO
∆ δ ∆ δ√

s = Mz 0.436689 0.524911 0.003416 0.025032
zmin = 0.1√

s = Mz 0.4365967 0.5246878 0.0033886 0.0250268
zmin = 0.5√

s = Mz 0.440478 0.528603 0.0033499 0.025249
zmin = 0.9√

s = 240 GeV 2.468049 5.568990 0.697615 0.147786
zmin = 0.1√

s = 240 GeV 0.114240 0.105660 0.007085 0.006063
zmin = 0.5√

s = 240 GeV 0.072996 0.040264 0.002663 0.003874
zmin = 0.9

∆
LO

= h21, ∆
NLO

= h20

δ
LO

=
|h22 − h22(1/2)| + |h22 − h22(2)|

2

δ
NLO

=
|h22 + h21 − (h22 + h21)(1/2)| + |h22 + h21 − (h22 + h21)(2)|

2

Andrej Arbuzov Partons in QED 25th August 2025 18 / 22



QED Higher order logs Conclusions

QED PDFs vs. QCD ones

Common properties:
QED splitting functions = abelian part of QCD ones
The same structure of DGLAP evolution equations
The same Drell-Yan-like master formula with factorization
Factorization scale and scheme dependence

Peculiar properties:
QED PDFs are calculable
QED PDFs are much more singular at x → 1
QED renormalization scale µR = me is preferable
QED PDFs can (do) lead to huge corrections
Massification procedure
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Outlook

A new high-energy e+e− collider is well motivated by the necessity
to study SM (its Higgs sector in particular) in more detail
New calculations of two-loop and higher-order corrections within
QED and full SM are required
We have a progress in NLO QED PDFs and fragmentation
functions
QED provides explicit results and can serve as a toy model for
cross checks of QCD
Optimisation of factorization scale and scheme choices is important
NLO exponentiation is strongly scheme-dependent
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“Electron is as inexhaustible as atom” (’1908)
(electron PDF ∼ proton PDF)
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