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Physics and geometry

There is currently no clear-cut answer to the question of what geometry is because
“the meaning of the word geometry changes with time and with the speaker” (S.-S.
Chern, From triangles to manifolds.)

Classical mechanics was closely connected with geometry from the very
beginning (Newton, Huygens, Hamilton, Poincaré, Birkhoff).
However, the geometries underlying Hamiltonian mechanics were a new type of
geometry, namely symplectic geometry and its odd-dimensional cousin, contact
geometry.
Before Lobachevsky, the question “Does another geometry exist besides
Euclidean geometry?” did not even arise.
The recognition of non-Euclidean geometry was not easy. Chernyshevsky wrote
to his sons from exile that all of Kazan laughed at Lobachevsky: “What is «ray
curvature» or «curved space»? What is geometry without the axiom of
parallel lines?” (S. G. Gindikin, Stories about physicists and mathematicians.)
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Physics and geometry

None of the serious scientists paid attention to Lobachevsky’s publications in
Russian.
None of the French mathematicians paid attention to his latest work either.
There were no German readers for his book in German. With one, but
important, exception.
Gauss read his short book in German and was so impressed that he began to
study Russian.
He succeeded in getting Lobachevsky elected as a corresponding member of
the Royal Scientific Society of Göttingen.
However, despite Gauss’s support, Lobachevsky died without having achieved
recognition of his ideas.

V.V. Prasolov, A.B. Skopenkov, Reflections on the recognition of Lobachevsky
geometry.
V.G. Boltyansky, A.P. Savin Conversations about mathematics.
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Curvature. Spaces of constant curvature

α +β + γ −π = κA.

α,β ,γ: interior angles of the geodesic triangle. κ: Gaussian curvature. A: area of the geodesic triangle.

N. Strobel, Astronomy Notes.
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Geometry of the Universe

The Friedmann-Lemaitre-Robertson-Walker metric used to describe cosmic
spacetime is based on the cosmological principle that assumes homogeneity and
isotropy throughout the Universe.

ds2 = c2dt2−a2(t)dl2

ds2 = c2dt2−a2(t)

[
dr2

1−κr2 + r2(dθ
2+sin2

θ dϕ
2)

]
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Milne Model

The concepts of a curved or flat three-dimensional space are largely conditional,
depending on the method of choosing the time coordinate (Ya.B. Zeldovich, The
theory of the expanding Universe, created by A.A. Friedman).

The Milne model demonstrates the relativity of space in the most striking way: a
spatial slice of the same quarter of Minkowski spacetime has Euclidean geometry
for the usual foliation and negatively curved hyperbolic geometry for the Milne
foliation.
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Kepler’s problem in a space of constant curvature

An analogue of the Newton force for hyperbolic space was proposed by
Lobachevsky.
An analytical expression for the Newtonian potential in H3 was obtained in
1870 by Schering.
In 1873, Lipschitz considered the motion of one body in a central potential on
the sphere S2.
In 1885, Killing found a generalization of all three Kepler laws to the case of
the sphere S3. In 1886, similar results were published by Neumann.
An extension of these results to the hyperbolic case was carried out by
Liebmann in 1902. In 1903, he also proved a generalization of Bertrand’s
theorem for the spaces S2 and H2.
Classical mechanics in spaces of constant curvature can be considered the
predecessor of special and general relativity. After the emergence of these
theories, the above-mentioned works of Schering, Killing and Liebmann were
almost completely forgotten.

A.V. Shchepetilov, Comment on “Central potentials on spaces of constant
curvature: The Kepler problem on the two-dimensional sphere S2 and the
hyperbolic plane H2”
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New parameterization of the length element

Sκ(x) =


1√
κ
sin(

√
κx), if κ > 0,

x , if κ = 0,
1√
−κ

sinh(
√
−κx), if κ < 0.

Cκ(x) =

 cos(
√

κx), if κ > 0,
1, if κ = 0,
cosh(

√
−κx), if κ < 0.

C 2
κ +κS2

κ = 1, S ′
κ = Cκ , C

′
κ =−κSκ , Tκ =

Sκ

Cκ

, 1+κT 2
κ =

1
C 2

κ

, κ +
1
T 2

κ

=
1
S2

κ

.

Old parameterization dl2 = dr2

1−κr2
+ r2(dθ 2+sin2

θ dϕ2).

r = Sκ(ρ).

New parameterization dl2 = dρ2+S2
κ(ρ)(dθ 2+sin2

θ dϕ2).

In what follows ρ → r .
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Coulomb potential in spaces of constant curvature

Poisson’s equation: ∆φ(r) =−4πeδ (⃗r).
Laplace-Beltrami operator:

∆=
1√
|g |

∂

∂x i

(√
|g |g ij ∂

∂x j

)
.

Metric tensor: gij = diag(1,S2
κ(r),S

2
κ(r)sin

2
θ ).

Laplace equation for the central potential of a point charge in spaces of constant
curvature:

1
S2

κ(r)

d

dr

(
S2

κ(r)
dφ

dr

)
= 0.

Coulomb potential energy in spaces of constant curvature for the hydrogen atom:

V (r) =− e2

Tκ(r)
.
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Schrödinger equation in spaces of constant curvature

[
−∆+

2m
h̄2 V

]
Ψ=

2m
h̄2 EΨ.

Laplace-Beltrami operator:

∆=
1√
|g |

∂

∂x i

(√
|g |g ij ∂

∂x j

)
.

Metric tensor: gij = diag(1,S2
κ(r),S

2
κ(r)sin

2
θ ).

Coulomb potential energy in spaces of constant curvature for the hydrogen atom:

V (r) =− e2

Tκ(r)
.
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Hydrogen atom in spaces of constant curvature

Ψ= Ylm(θ ,ϕ)G (r).
Radial equation:[

− 1
S2

κ(r)

d

dr

(
S2

κ(r)
d

dr

)
+
l(l +1)
S2

κ r)
+

2m
h̄2 V − 2m

h̄2 E

]
G (r) = 0.

Dimensionless variable:
z =

1√
κTκ(r)

.

The equation to be solved is:

d2G

dz2 +
λE +βRz− l(l +1)(1+ z2)

(1+ z2)2
G = 0, λE =

2mE

h̄2
κ
, βR =

2me2

h̄2√
κ
.

L.M. Nieto, H.C. Rosu, M. Santander, Hydrogen atom as an eigenvalue problem in
3D spaces of constant curvature and minimal length.
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Hydrogen atom in spaces of constant curvature

The spectrum of the hydrogen atom in S3 space was obtained by Schrödinger in
1940 using the factorization method he invented.

En =
me4

2h̄2

(
− 1
n2 +(n2−1)

a2
B

R2

)
, aB =

h̄2

me2 ,κ =
1
R2 .

Schrödinger declared that he found the problem “difficult to solve in any other
way.” But a year later Stevenson showed that the spectrum and wave function
could be obtained without too much difficulty by the usual methods of solving
differential equations.

We want to solve this problem using the Nikiforov-Uvarov method. Surprisingly, in
the extensive literature on this topic, we have so far found only two papers: V.N.
Mel’nikov, G.N. Shikin, Hydrogen-like atom in the gravitational field of the universe
and V.D. Ivashchuk, V. N. Mel’nikov, Dually-charged mesoatom on the space of
constant negative curvature where this method is mentioned in connection with
similar problems, but in our opinion it is not used in the most optimal way.
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Nikiforov-Uvarov method

The Nikiforov-Uvarov method can be applied to second-order differential equations
of generalized hypergeometric type, which have the following form

u′′+
π1(z)

σ(z)
u′+

σ1(z)

σ2(z)
u = 0,

where the prime denotes differentiation with respect to the independent variable z
(which may be complex), π1(z) is a polynomial of degree no higher than the first,
and σ(z), σ1(z) are polynomials of degree no higher than the second.
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Gauge transformations of functions of generalized hypergeometric type

The set of such functions is invariant under “gauge” transformations u(z)→ y(z):

u(z) = eϕ(z)y(z),

If the calibration function satisfies the equation

ϕ
′ =

π(z)

σ(z)
,

where π(z) is some polynomial of degree no higher than one. Then

y ′′+
π2(z)

σ(z)
y ′+

σ2(z)

σ2(z)
y = 0,

where
π2(z) = π1(z)+2π(z)

is a polynomial of degree no higher than one, and

σ2(z) = σ1(z)+π
2(z)+π(z)

[
π1(z)−σ

′(z)
]
+π

′(z)σ(z)

is a polynomial of degree no higher than two.
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Reduction to an equation of hypergeometric type

We can take advantage of the freedom in choosing the polynomial π(z) and
simplify the original equation. Namely, we choose π(z) such that

σ2(z) = λσ(z),

where λ is a constant. Then the original equation is simplified to a hypergeometric
equation:

σ(z)y ′′+π2(z)y
′+λy = 0.

This choice means
π

2+π[π1−σ
′]+σ1−kσ = 0,

where
k = λ −π

′

is another constant.
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Finding the polynomial π(z)

The quadratic equation for π(z) has a solution

π =
σ ′−π1

2
±

√(
σ ′−π1

2

)2

−σ1+kσ .

Since π is a polynomial,

σ3(z) =

(
σ ′−π1

2

)2

−σ1+kσ

must be the square of a first-order polynomial. Therefore, it has a double root and
its discriminant is zero:

∆(σ3) = 0.

This equation defines the constant k and, therefore, the polynomial π(z) and the
constant λ .
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Hypergeometric type polynomials

In a bound state problem, the hypergeometric type equation must have a
polynomial solution.

For vn(z) = y (n)(z) we also obtain an equation of hypergeometric type:

σv ′′n + τn(z)v
′
n+µnvn = 0,

and recurrence relations

τn(z) = σ
′(z)+ τn−1(z), µn = µn−1+ τ

′
n−1,

with initial values
τ0(z) = π2(z), µ0 = λ .

If y(z) = yn(z) is a polynomial of order n, then vn = const and the equation for vn
will be satisfied only if µn = 0.
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Quantization condition

Repeated applications of recurrence relations will give

τn(z) = nσ
′(z)+ τ(z), µn = λ +nτ

′+
1
2
n(n−1)σ ′′,

Therefore, in order for y(z) = yn(z), as a solution of a hypergeometric equation, to
be a polynomial of order n, the following “quantization condition” must be satisfied:

λ = λn =−nτ
′− 1

2
n(n−1)σ ′′.
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Rodriguez formula

yn(z) =
Bn

ρ(z)
[σn(z)ρ(z)](n) ,

where Bn is some (normalization) constant, and the weight function ρ(z) satisfies
the Pearson equation

(σρ)′ = ρπ2.
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Application of the formalism to our problem

The equation to be solved is:

d2G

dz2 +
λE +βRz− l(l +1)(1+ z2)

(1+ z2)2
G = 0.

σ = 1+ z2, π1 = 0, σ1 = λE +βRz− l(l +1)(1+ z2).

σ3 = z2[1+k+ l(l +1)]−βRz+k+ l(l +1)−λE .

∆(σ3) = β
2
R −4[1+k+ l(l +1)][k+ l(l +1)−λE ] = 0.
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Application of the formalism to our problem

x = 1+k+ l(l +1).

β 2
R

4
= x(x−1−λE ).

Of the two possible π , we choose the one with π ′<0:

π = (1−
√
x)z+

√
x−1−λE , π2 = 2π.

Quantization condition:

λ =−nrτ
′− 1

2
nr (nr −1)σ ′′ =−2nr (1−

√
x)−nr (nr −1).

k = λ −π ′ = λ −1+
√
x . We express k through x , k = x−1− l(l +1), and arrive

at a quadratic equation for
√
x :

x− (2nr +1)
√
x +nr (nr +1)− l(l +1) = 0.
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Application of the formalism to our problem

√
x = nr +

1
2
±
(
l +

1
2

)
,

√
x = nr+l +1 = n.

Therefore,
β 2
R

4
= n2(n2−1−λE ), λE = n2−1−

β 2
R

4n2

En = Ry

(
− 1
n2 +(n2−1)κa2

B

)
, Ry =

h̄2

2ma2
B

=
me4

2h̄2 .
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Application of the formalism to our problem

Finding the calibration function

dϕ

dz
=

π

σ
=

−(n−1)z+
√
n2−1−λE

1+ z2 =
−(n−1)z+ βR

2n
1+ z2 .

ϕ =−1
2
(n−1) ln(1+ z2)+

βR

2n
arctanz .

1+ z2 =
1

κS2
κ(r)

, arctanz =
i

2
ln

1− iz

1+ iz
,

βR

2n
arctanz =

π

2n
√

κaB
− 1

n

r

aB
.

Gn,l(r) = Bn,nr [
√

κSκ(r)]
n−1e

− 1
n

r
aB ynn−l−1(z).
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Application of the formalism to our problem

Finding the weight function

d

dz
(ρσ) = ρπ2,

(ρσ)′

ρσ
=

π2

σ
= 2ϕ

′, ρ(z) =
1

1+ z2 e
2ϕ .

ρn(z) = (1+ z2)−ne
βR
n arctanz .

ynnr =
1

ρ(z)

[
(1+ z2)nr ρ(z)

](nr ) .
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Normalization and flat limit

To determine the normalization factor one can calculate the corresponding
normalization integrals directly: S.I. Vinitsky et al., A Hydrogen atom in the curved
space. Expansion over free solutions on the three-dimensional sphere.

Since this is a rather laborious approach, we prefer the indirect way using raising
and lowering operators H.I. Leemon, Dynamical symmetries in a spherical geometry.
II, P.W. Higgs, Dynamical symmetries in a spherical geometry. I.
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Normalization and flat limit

Â+(l) =
2√
κ

l

n+ l

[
− l +1
Tκ(r)

+
1
laB

− d

dr

]
,

Â−(l) =

√
κ

2
n2a2

B

1+n2(l +1)2a2
Bκ

l +1
n− l −1

[
− l

Tκ(r)
+

1
(l +1)aB

+
d

dr

]
.

Bn,nr =

√
κ

2

√
n2a2

B

1+n2(l +1)2κa2
B

n+ l +1
n− l −1

Bn,nr−1.

This relation allows us to calculate the normalization coefficients recursively,
starting from Bn,0. For the latter, we have

B−2
n,0 =

∫
S2

κ(r)[
√

κSκ(r)]
2(n−1)e

− 2r
naB dr .
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Normalization and flat limit

If κ < 0, then the last integral in B−2
n,0 converges only for n

√
−κ < 1

naB
, or

n2 < R
aB

, where R = 1√
−k

. Therefore, in a space of constant negative curvature,

hydrogen-like elementary atoms have only a finite, albeit very large n ∼
√

R
aB

,
number of bound states L. Infeld, A. Schild, A note on the Kepler problem in a
space of constant negative curvature.

In the flat limit κ → 0, Sκ(r)→ r ,

B−2
n,0 → κ

n−1
∞∫

0

r2ne
− 2r

naB dr = κ
n−1

(naB
2

)2n+1
(2n)!,

and, as a result,

Bn,nr → (
√

κ)nr+1−n

(
2

naB

)n+ 1
2−nr

√
1

2n(n− l −1)!(n+ l)!
.
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Normalization and flat limit

On the other hand, when κ → 0, then

z → 1√
κ r

, 1+ z2 → 1
κ r2 , ρ → κ

n r2n e
π

n
√

κ aB e
− 2r

naB ,

and

ynnr → κ
−nr r−2n e

2r
naB

dnr

dznr

[
r2(n−nr ) e

− 2r
naB

]
= (−1)nr (

√
κ)−nr r−2n

(naB
2

)2n−nr
e−1/t dnr

dtnr

[
t−2(n−nr )e1/t

]
,

where t =−naB
2r . Next we use the following Duff identity

dn

dtn

[
t−k e1/t

]
= (−1)n n! t−(n+k) e1/t Lk−1

n

(
−1
t

)
,

where Lmn (x) is the associated Laguerre polynomial. As a result, we get

|n,nr ⟩ → (−1)nr (n− l −1)! (
√

κ)n−1−nr rn−1−nr e
− r

naB L2l+1
n−l−1

(
2r
naB

)
.
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Normalization and flat limit

Finally,

Bn,nr |n,nr ⟩ → (−1)n−l−1 2
n2

√
(n− l −1)!
a3
B(n+ l)!

(
2r
naB

)l

e
− r

naB L2l+1
n−l−1

(
2r
naB

)
.

Up to a possible irrelevant sign, the right-hand side is exactly the wave function of
the hydrogen atom in flat space. Note that many different conventions are used for
ordinary and associated Laguerre polynomials in the physics literature. We follow
conventions of Arfken and Weber, Mathematical methods for physicists.
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Concluding remarks

The Nikiforov-Uvarov method has been used in many quantum mechanical
problems.
Hydrogen-like atoms in spaces of constant curvature represent another
quantum mechanical problem where this method can be successfully applied.
Moreover, in our opinion, in this case the Nikiforov-Uvarov method provides
the most natural and simple way to solve the problem.
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Thanks for attention!
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