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Outlook

Entanglement Entropy (EE)
Quantum information

QFT

Measurement of EE

In solid state physics

In high energy — Challenges in Direct Measurement

Heavy Ion Collisions (HIC). HICs produce thousands of particles,
making quantum state trucking impossible

Other proposal to measure entanglement in HE: deep inelastic
scattering; jet production

Calculation of EE in holography
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Entanglement Entropy

Quantum system is described by an algebra U of observables and
the quantum state ρ – positive linear functional on it.
According GNS construction the algebra U has a representation a
Hilbert space H.
The state ρ on algebra of operators in the Hilbert space often can
be given as a trace

ρ(O) = Tr[ρ · O]

von-Neumann entropy of ρ: S(ρ) = −Tr[ρ ln ρ]
For the composed system H = HA ⊗ HB a separable state is such
that:

|Ψ⟩ = |ΨA⟩ ⊗ |ΨB⟩
Entangled state |Ψ⟩ ∈ H if it is not separable
Reduced density matrix ρA for the subsystem A is obtained by
tracing out with respect to HB by

ρA = TrHB [ρ]

The entanglement entropy is defined as the von-Neumann entropy
for ρA

SA = −Tr[ρA ln ρA]
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EE in Lattice Gauge Theories

P.Buividovich, M.Polikarpov, “Numerical study of entanglement
entropy in SU(2) lattice gauge theory,” Nucl. Phys. B 802 (2008) 458

L. Ebner et al. “Entanglement Properties of SU(2) Gauge Theory,”
arXiv:2411.04550

The Kogut-Susskind (1974) Hamiltonian
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Fig. 1 (a) Plaquette chain segment in the vicinity of the cut separating the system into left (black)
and right (red) parts, i.e., A and Ac. The state on the left is labeled by the collection of j values
{jL} on the uncut links and the j values j1L, j2L for the two dangling links. Similarly for the state
on the right. j1L = j1R and j2L = j2R since they form the same link before the cut. (b) Honeycomb
lattice parallelogram with Nx = Ny = 3 plaquettes.

on the plaquette chain can be written as a collection of j-quantum numbers of the
individual links, i.e., |{j}i. Fig. 1a depicts the vicinity of the boundary surface @A
of the subsystem A which consists of all links to the left of @A. The system is thus
divided by “cutting” through two horizontal links, which we now refer to as dangling
links. The quantum state can be decomposed in terms of the left and right parts of
the system, i.e., subsystem A and its complement Ac,

| i = c{jL}j1Lj2L{jR}j1Rj2R
�j1Lj1R

�j2Lj2R
| {jL}j1Lj2L

i ⌦ | {jR}j1Rj2R
i , (3)

where c represents the combinatorial coe�cients and we assume Einstein’s summation
convention. The Kronecker symbols ensure that the representation of the left and
right dangling link variables coincide. Tracing out {jR}, j1R, j2R, i.e., the physical
degrees of freedom of the right segment, yields a reduced density matrix that is a
direct sum of density matrices associated with specific dangling link configurations.
Since the separation of the subsystem along the horizontal dangling links does not
involve vertices, Gauss’s law is still valid at each vertex ensuring gauge invariance of
the reduced density matrix. It has been shown that Tr(⇢n

A) = Tr(⇢n
Ac) for any integer

n � 2 [22], implying equality of the eigenvalues of ⇢A and ⇢Ac and thus SA = SAc .

3 Thermalization

3.1 Eigenstate Thermalization Hypothesis

One promising idea of how thermodynamics can be expressed in the framework
of quantum mechanics is the ETH [10, 11]. It states that the structure of a local
observable expressed in the energy eigenbasis takes the following form:

hE↵|A|E�i = hAimc(E)�↵� + e�S(E)/2fA(E,!)R↵� , (4)

where E = (E↵ + E�)/2 and ! = E↵ � E� . The first part of the formula only con-
tributes to the diagonal part of the matrix, where hAimc(E) is the microcanonical

5

Plot from 2411.04550
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Prediction of quantum entanglement in particle jets

A. Florio et al. “Real-Time Nonperturbative Dynamics of Jet
Production in Schwinger Model: Quantum Entanglement and Vacuum
Modification,” PRL 131(2023) 021902

This prediction lays groundwork for experimental tests of
entanglement at particle colliders

Y. Afik,et al. “Quantum Information meets High-Energy Physics:
Input to the update of the European Strategy for Particle Physics,”
2504.00086

"Some of the most astonishing and prominent properties of Quantum
Mechanics, such as entanglement and Bell nonlocality, have only been
studied extensively in dedicated low-energy laboratory setups".

"The feasibility of these studies in the high-energy regime explored by
particle colliders was only recently shown, and has gathered the attention of
the scientific community".
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The goal of this talk study
behavior of

entanglement entropy in QCD
using holographic methods.
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Holographic QCD - phenomenological approach

Perturbation methods are not applicable to describe
QCD phase diagram
Lattice methods do not work, because of problems with
the chemical potential.
AdS/CFT [What is wrong with exact AdS/CFT
applications to QCD]
Holographic QCD - phenomenological model(s)

One of goals of Holographic QCD – describe QCD phase
diagram

Requirements:
reproduce the QCD results from perturbation theory at short
distances
reproduce Lattice QCD results at large distances (∼ 1 fm) and
small µB
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Holographic QCD vs exact AdS/CFT

Maldacena,1998

What is wrong with exact AdS/CFT applications to QCD:

QCD is not conformal, conformal invariance is restored
only in high energy
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Holographic QCD vs exact AdS/CFT

Maldacena,1998
What is wrong with exact AdS/CFT applications to QCD:

QCD is not conformal, conformal invariance is restored only in
high energy

No confinement in BHAdS5
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Holographic model of an anisotropic plasma in a
magnetic field at a nonzero chemical potential

I.A, K. Rannu, P.Slepov, JHEP, 2021

S =

∫
d5x

√−g

[
R− f1(ϕ)

4
F 2
(1) −

fB(ϕ)

4
F 2
(B) −

1

2
∂Mϕ∂Mϕ− V (ϕ)

]
ds2 =

L2

z2
b(z)

[
− g(z) dt2 + dx2 + dy21 + ecBz2dy22 +

dz2

g(z)

]
A(1),m = At(z)δ0m, At(0) = µ, F(B) = dx ∧ dy1

Giataganas’13; IA, Golubtsova’14; Gürsoy, Järvinen ’19; Dudal et al.’19

b(z) = e2A(z) ⇔ quarks mass “Bottom-up approach”

Heavy quarks (b, t):
A(z) = −cz2/4 Andreev, Zakharov’06

A(z) = −cz2/4 + pz4 IA, Hajilou, Rannu, Slepov, EPJ C (2023)83
Light quarks (d, u)

A(z) = − a ln(bz2 + 1) Li, Yang, Yuan’17
φ - dilaton, α(z) = eφ(z) - running coupling in HQCD
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Holographic Entanglement Entropy (HEE)

The Ryu Takayanagi prescription :
SHEE(A) for spatial 3-dim domain A with boundary ∂A, is obtained
by extremizing the volume of the static 3-dim domain γ, which is
located in the 5-dim space M (AdS5 or its deformations) and on the
boundary of the 5-dim space ∂M coincides with ∂A

SHEE(A) =
1

4G5N

min
γ

∫

γ

d3ξ
√
| detGs,MN∂αxM∂βxN |

x1

x2

z

R3

A

γ
ϵ−

∂γ
∣∣∣
∂M

= ∂A
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Visualizing the Entanglement Volume

f(x1, x2, x3) = x2
1 + x4

2 + x2
3
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HEE for a slab-shaped region.

f(x1, x2, x3) = x2
3
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Orientation of the entanglement region
vs HIC geometry

Schematic picture of two ions collisions
Natural coordinate system:

x1 ( longitudinal axis x) along the line of collision
x2 (1-st transversal axis y1) along of the impact parameter.
x3 (2-nd transversal axis y2) along of magnetic field
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⇠2

x1

x2

⇠3

x3

N
 

✓

Figure 4. ORIGINAL The subsystem orientation is defined by the Euler angles, �, ✓,  

in respect to the coordinate system related with the HIC , (parallepiped-MIAN.nb)
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23 = (g1a

2
21 + g2a

2
22 + g3a

2
23)(g1a

2
31 + g2a

2
32 + g3a

2
33) (3.15)

� (g1a21a31 + g2a22a32 + g3a23a33)
2

= (a21a23 � a22a31)
2g1g2 + (a31a32 � a21a33)

2g1g3 + (a23a32 � a22a33)
2g2g3

– 10 –

Figure 4. The entangling subsystem is presented as a green slab. Rotating the green slab

by the Euler angles (�, ✓,  ) we get the pink slab that is oriented along the axes (x1, x2, x3)

associated with the HIC geometry and shown in Fig.5.

x1

x2

x3

1-st ion

magnetic field

2-nd ion

collision line

b

Figure 5. The orientation of the coordinate system (x1, x2, x3) in respect to colliding ions.

xi are spatial coordinates in (2.1), aij(�, ✓,  ) are entries of the rotation matrix

M(�, ✓,  ) =

0
@

a11(�, ✓,  ) a12(�, ✓,  ) a13(�, ✓,  )

a21(�, ✓,  ) a22(�, ✓,  ) a23(�, ✓,  )

a31(�, ✓,  ) a32(�, ✓,  ) a33(�, ✓,  )

1
A (3.4)

– 11 –

Irina Aref’eva Entanglement entropy in QCD under extreme condition 25.07.22 13 / 25



Orientation of the entanglement region (slab)
vs HIC geometry

x2
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Figure 7. ORIGINAL-for the text : (parallepiped-MIAN.nb)

⇠1

⇠2

⇠3

Figure 8. ORIGINAL: (parallepiped-MIAN.nb)

Since there is no dependence of the integrand on ⇠2, ⇠3 we can perform the integration

over these variable that give the sizes of the parallelepiped in second and third

directions
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Figure 3. The schematic picture of two ions collisions. A) Each ion is presented as a disk

with radius D/2 (blue and red disks). The trajectories of centers of two ions depicted by

the points are shown by dashed blue and red lines and the directions of their movement are

indicated by thick arrows. The overlapping area of two ions considered as two disks has

the shape of a region bounded by two arcs of two circles (in the cross section perpendicular

to the line of the ions collision). B) An almost central collision. On the left side of each

graph, we show the orientation of the slabs that we are considering.

We have

x0(⇠) = const,

xi(⇠) =
X

j=1,2,3

aij(�, ✓,  ) ⇠j, i = 1, 2, 3, (3.3)

x4(⇠) = z(⇠1),
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(ḡ22ḡ33 � ḡ2
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Figure 4. The entangling subsystem is presented as a green slab. Rotating the green slab

by the Euler angles (�, ✓,  ) we get the pink slab that is oriented along the axes (x1, x2, x3)

associated with the HIC geometry and shown in Fig.5.
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Figure 5. The orientation of the coordinate system (x1, x2, x3) in respect to colliding ions.

xi are spatial coordinates in (2.1), aij(�, ✓,  ) are entries of the rotation matrix

M(�, ✓,  ) =

0
@

a11(�, ✓,  ) a12(�, ✓,  ) a13(�, ✓,  )

a21(�, ✓,  ) a22(�, ✓,  ) a23(�, ✓,  )

a31(�, ✓,  ) a32(�, ✓,  ) a33(�, ✓,  )
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Orientation of the entangled region is
set by Euler angles
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General anisotropic holographic model associated
with HIC geometry

Natural coordinate system:
x1 ( longitudinal axis x) along the line of collision
x2 (1-st transversal axis y1) along of the impact parameter.
x3 (2-nd transversal axis y2) along of magnetic field
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in respect to the coordinate system related with the HIC , (parallepiped-MIAN.nb)
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General anisotropic holographic model

ds2 =
L2bs(z)

z2

4∑
M=0

GM (z)(dXM )2

X0 = t, X1 = x, X2 = y1, X
3 = y2, X

4 = z

G0 = −g(z), G4 =
1

g(z)

Gi = gi(z), i = 1, 2, 3,

bs(z) = b(z)e

√
2
3
ϕ(z) AdS deformation factor

g(z) blackening function
gi(z) anisotropy factors.
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EE for subsystem AxY Y allocated along x-direction

I.A., Phys. Part. Nuclei Lett. 16, 486 (2019)
I.A., A.Patrushev, P.Slepov, JHEP (2020)07, 043

x ∈ [0, |lx| << Lx], y1 ∈ [0, Ly1], y2 ∈ [0, Ly2]

x
y1

y2

x
y1

y2

1

SxY Y =
AxY Y

Ly1Ly2

=

∫ z∗

0

b3/2s (z)

z1+2/ν

√
1 +

z′2

g(z)
dx

bs(z, ν) ≡ ecz2/2+
√

2
3
ϕ(z,zh,ν)
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EE for subsystem AyXY allocated along y1-direction

x ∈ [0, Lx], y1 ∈ [0, |ly1| << Ly1], y2 ∈ [0, Ly2]
x

y1

y2

x
y1

y2

1

SyXY =

∫ z∗

0

b3/2s (z)

z1+2/ν

√
1 +

z′2

g(z) z2−2/ν
dx

BI-action:

S =
T

2πα

∫ ℓ

−ℓ

M(z)
√

F(z) + z′2dx, V(z) = M(z)
√
F(z)

y1-direction is equivalent to y2 without magnetic field
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Renormalization (*)

For xYY case and 1 ≤ ν ≤ 1.67 we have to perform renormalization (just one substraction):

1

2
SxY Y,ren =

∫ z∗

ϵ
dz

 b
3/2
s (z)

z1+2/ν

1√
g(z)(1− V2

xY Y
(z∗)

V2
xY Y

(z)
)

− b
3/2
s,as(z)

z1+2/ν

+

∫ z∗ b
3/2
s,as(z)

z1+2/ν
dz

For xYY case and ν > 1.67 we have an integrable singularity
For yXY case and ν ≥ 1 we have nonintegrable singularity and have to perform
renormalization (just one substraction):

1

2
SyXY,ren =

∫ z∗

ϵ
dz

 b
3/2
s (z)

z2+1/ν

1√
g(z)(1− V2

yXY
(z∗)

V2
yXY

(z)
)

− b
3/2
s,as(z)

z2+1/ν

+

∫ z∗ b
3/2
s,as(z)

z2+1/ν
dz
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Numerical Results: HEE dependence on length (*)

ν = 4.5, T=0.269

ν = 3, T=0.269

ν = 4.5, T=0.4

ν = 3, T=0.4

ν = 4.5, T=0.5

ν = 3, T=0.5

1 2 3 4
LyXY

-15

-10

-5

SyXY,µ=0.2

ν = 3, T=0.5

ν = 4.5, T=0.5

ν = 3, T=0.4

ν = 4.5, T=0.4

ν = 4.5, T=0.269

ν = 3, T=0.269

0.05 0.10 0.15 0.20 0.25
LxYY

0.5

1.0

1.5

2.0

SxYY,µ=0.2
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Numerical Results: HEE dependence on T

HPHP

BB BB

iso

anis

μ=0, ν=4.5

μ=0.2, ν=4.5

μcr=0.349, ν=4.5

μ=0.45, ν=4.5

μ=0, ν=1

μ=0.05, ν=1

μcr=0.117, ν=1

μ=0.2, ν=1

0.1 0.2 0.3 0.4
T

-10

-5

5

ln(SxYY)

A)

μ=0, ν=4.5

μ=0.2, ν=4.5

μcr=0.349, ν=4.5

μ=0.45, ν=4.5

μ=0, ν=1

μ=0.05, ν=1

μcr=0.117, ν=1

μ=0.2, ν=1

HP

HP

BB

BB

anis

iso

0.1 0.2 0.3 0.4
T

-10

-5

5

lnSyXY

B)
HEE of the slab with ℓ = 1: A) longitudinal B) transversal

Isotropic: ν = 1, µcr = 0.117, Tcr = 0.33
Anisotropic: ν = 4.5, µcr = 0.349, Tcr = 0.33
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Entanglement Entropy Density η

η =
dS(ℓ)

dℓ
The advantage of dealing with the HEE density is
that it has no divergences.

η(z∗) =
dS(z∗)

dℓ(z∗)
=

V(z∗)

4

General expression for full anisotropic case

η(z∗) =
1

4

L3

z3
∗
b3/2s (z∗)(g1(z∗)g2(z∗)g3(z∗))

1/2
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1-st order phase transition in HQCD.

LQ HQ
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1-st order phase transition in HQCD, B ̸= 0
1-st order phase transition for “light” and “Heavy”

quarks in Holography

Light quarks Heavy quarks

cB = 0
cB = - 0.005
cB = - 0.01
cB = - 0.02
cB = - 0.03
cB = - 0.04
cB = - 0.05
cB = - 0.06
cB = - 0.07
cB = - 0.08

cB = 0
cB = - 0.001
cB = - 0.005
cB = - 0.01
cB = - 0.02
cB = - 0.03
cB = - 0.04
cB = - 0.05
cB = - 0.06
cB = - 0.07

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
μ, GeV0.00

0.05

0.10

0.15

T, GeV

cB=-0.5

cB=-1

cB=-3

cB=-0.5

cB=-1

cB=-2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
μ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
T

ν=1

ν=4.5
(μCEPHQ,TCEPHQ)

I.A, Ermakov, Rannu, Slepov,EPJC’23 I.A, A. Hajilou, K.R., P.S.EPJC’23

QCD Phase Diagram from Lattice
Columbia plot
Brown et al.’90 Philipsen, Pinke’16)

Main problem on Lattice: µ 6= 0

И. Арефьева КХД фазовые переходы в области NICA Сессия отделения ЯФ РАН 4 / 15
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Conclusion

Entanglement entropy serves as a powerful diagnostic tool in
holographic QCD. We have shown that it exhibits a clear jump at
first-order phase transitions (FOPT).

This sharp signature provides a robust method for locating the
position of FOTR in the (T, µ)-plane

Looking forward, we propose a compelling connection to
experiment: the entanglement entropy of the collision region in
heavy-ion collisions may be directly identified with the final-state
particle multiplicity. This provides a potential bridge between our
theoretical framework and experimental observables

Other theoretical methods for locating of FOTR in talks:
P. Slepov, M.Usova
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Thank you!
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