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"It seemed to me that the foundation of the work of the mathematical physicist
is to get the correct equations, that the interpretation of those equations was

only of secondary importance”.
Paul Dirac, Solvay Conference, 1927

"While the accuracy and derivation of equations are foundational for
mathematical physicists, interpretation is not necessarily secondary but rather a
crucial and often challenging aspect, particularly in quantum mechanics, where
the meaning of equations can be debated and different "interpretations” (like
the Copenhagen Interpretation) are proposed to understand the reality
described by the math. The difficulty in obtaining correct equations is often
intertwined with the difficulty of their interpretation, with many physicists
arguing that understanding the underlying reality suggested by the equations is

just as important as the equations themselves”.
Al Overview, 2025



MECHANICAL EQUIVALENT OF THE (REAL) KLEIN-GORDON EQUATION
In the case of the long-wave approximation (transition to a continuous string)

Hans de Vries. Understanding Relativistic Quantum Field Theory.
http://physics-quest.org/

AAANA AAAA
v b’V V’U'V" ¢, o ). J l" i" 1

< Coupled spring oscillators. The transverse wave

Sergej Faletic

Sergej Faleti¢. How close can we get waves to wavefunctions, including potential?

Sergej FaletiC. The Klein-Gordon string: A tool I've never heard of before
Faculty of mathematics and physics, University of Ljubljana, Slovenia
and Poljane High School, Ljubljana, Slovenia

< Coupled mathematical pendulums. The longitudinal wave

Figure 5. Coupled pendula can be used as a type of braced medium. The medium is made of pendula on
strings coupled by a chain hanging from one pendulum to the next (A). On the bottom right side is the
driving pendulum (B). A string (C) connects the string of the driving pendulum and one of the strings of

the medium, and serves as coupling. V O TU ri neta |

T Coupled spring oscillators. The longitudinal wave

The 22nd Lomonosov Conference on Elementary Particle
Physics. 21-27 August 2025



Crawford F.S. Waves. Berkeley Physics Course. McGraw-Hill, New York; 1968. Vol. 3.
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Fig. 310 Coupled pendulums with

Fig. 2.16 Coupled pendulums. (a) Equi-

librium. (b) General configuration.

pecified boundary
TUED o otz + S DU (63)

Klein-Gordon wave equation. Equation (63) is a famous wave equation.
It is not the classical wave equation, except when wy is zero. It is sometimes
called the “Klein-Gordon wave equation.” (It holds for the de Broglie
waves of relativistic free particles. See Supplementary Topic 2.)

Esoteric examples

If one combines De Broglie’s hypothesis, which says that a particle of
momentum p has a wave number k given by p = hk, with the “Bohr fre-
quency condition,” which says that a particle of energy E has a wave fre-
quency « given by E = hw, one can then find a dispersion relation
between w and k for particles, given the relation between E and p. Ex-
amples are given in Supplementary Topic 2.

For a relativistic free particle, the; relation between energy, momentum,
and rest mass m is given by

E? = (me)? + (cp)?, (5)

which gives the dispersion relation (using E = #w and p = hk, which are
relativistically correct)

h20? = (mc?)? + (hek)?, (8)

Eq. (7). For free relativistic particles, the relativistic dispersion relation is

h2w? = h2c2k? 4 (mc?)2. (8)
Multiplying Eq. (8) by —A 2J(z,f) and using Eqgs. (3) and (5), we obtain
%Yzt 92zt 2
Ual) _ o TH2D D) gt )

Equation (9) is called the Klein-Gordon equation. Notice that if we set

The 22nd Lomonosov Conference on Elementary Particle

Physics. 21-27 August 2025



ONE-DIMENSIONAL MASS-IN-MASS CHAINS

A one_dimensional Chain Wlth identical masses. A model Of a A One-dimenSionaI Chain Wlth two diﬁerent masses. A mOdel Of a one-
one-dimensional monatomic crystal with only an acoustic dimensional diatomic crystal with acoustic and optical dispersion
dispersion branch branches

One-dimensional chain "mass in mass®. J. H. Vincent 1989 A chain of connected oscillators is a mass-in-mass chain in the case of

M > m (the equilibrium position of the load m is fixed and marked with a
Cross)

A modified mass-in-mass chain with the addition of harmonic interaction between loads with the same mass M



A ONE-DIMENSIONAL CHAIN WITH IDENTICAL MASSES.
A MODEL OF A ONE-DIMENSIONAL MONATOMIC CRYSTAL

1 I I /
2.0

m m m

The equation of motion Only "acoustic” dispersion 15

(Newton's Second Law of Motion): branch:
1.0
d*u 4]  ka =
m zn = [(Up_q + Upy1 — 2Uy) w? = — sin®—
dt m 2 0.5
I
Wm = |~ k—2ﬂ _2r __w ka 0.0
m ~ 1 W=~ W= X=_ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X Acoustic branth of vibrations

w =2 sin —

2

In the case of the long-wave approximation (transition to a continuous string), the mass chain m is described by a
wave equation with an only "acoustic” dispersion branch:

/

7

/ .
azu 5 aZu I 5 String
— = SH =, w = syk, Sm = a Ezawm 2

= aw, =+E/p =./al/p = a/1/m - the phase velocity of the wave, The transverse wave
E = al - Young's module, p = m/a - linear density.
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A ONE-DIMENSIONAL CHAIN WITH TWO DIFFERENT MASSES.
A MODEL OF A ONE-DIMENSIONAL DIATOMIC CRYSTAL

There are acoustic w_, optical w,. dispersion branches and a band gap

2

0
I 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

m X
> = mM_ _ m The law of dispersion for a chain with two different masses.
m+M e+l The optical mode w, is a solid red line, and the acoustic mode
Here u is the reduced atomic mass of a primitive cell. w_ 1s a blue dotted line. £=10,5

The 22nd Lomonosov Conference on Elementary Particle Physics. 21-27 August 2025



A CHAIN OF COUPLED OSCILLATORS (THE EQUILIBRIUM POSITION OF THE
MASS M IS FIXED AND MARKED WITH A CROSS)

3
2.5 _/’7
d?u,

m—g = —Kuy, + I(up_1 + Upyq — 2Uy) X 2

ka I K 15

w? = wi; + 4ws sin27 N e /; 1

I wyy 1 ® ka 0>

y = E WO = = W = w— X = ?
(l)m W m IUIO.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
X
W=\/Wg+4sin2— _ . X

2 The law of dispersion. The parameter K/I = 1/y takes the value from

0 on the lower curve, then 0.2; 0.5; 1; 2 and 5 on the upper one,
respectively, the parameter y takes the value oo on the lower curve,
then 5; 2; 1; 0.5; 0.2 on the upper one. The lower curve (K<<I )
coincides with the graph for a one-dimensional infinite chain with the

9%u 5 0%u 2 same masses m connected by springs of rigidity K.

atZ = Sm aZZ _ a)Olu

In the limit of long-wave oscillations, the chain is
described by the real Klein-Fock-Gordon equation
(classical physics)

Frank S. Crawford. Waves. Berkeley Physics Course. Vol. 3. New York: McGraw-Hill, 1968
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A CHAIN OF COUPLED OSCILLATORS.
LONG-WAVE APPROXIMATION

In the case of the long-wave approximation (transition to a continuous string), the chain of coupled oscillators is described by
the real Klein-Gordon-Fock equation (KGF) with an "optical" dispersion branch:

_ . 0°u  , 0%u , 5
The real equation of KGF: 52 = Sing,z T WorlU

’K ’1 =

w? = wé + n2x? .
Resembles: E? = (mc?)? + p?c? 0
X
string The law of dispersion. The parameter K/I = 1/y takes the value from 0 on the lower
elastic gasket curve, then 0.2; 0.5; 1; 2 and 5 on the upper one), respectively, the parameter y takes
the value o« on the lower curve, then 5; 2; 1; 0.5; 0.2 on the upper one. The lower
The transverse wave curve (K<<I) coincides with the law of dispersion for the wave equation wp; = 0 .
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VINCENT'S CLASSIC MASS-IN-MASS CHAIN. 1898

2.5

d*u
m dtzn = K(Up — up) + I(up_q + Upy1 — 2uy)
| q2u,
L dtz ZK(un_Un)
2 1+e& ( 4y zn_x)
wi = 1+1 gsm 5 +
+2XE (1 b sinzn_x)2 — 108 gip2 X 0o =
- 2y 1+e 2 (1+£)2 2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
_ 1 m [ [ . x o
Wt = €= Yy =5 Wy = | There are acoustic w_, optical w, dispersion branches and
a band gap

The mass-in-mass chain is interesting from the point of view of creating acoustic metamaterials with unique characteristics. Acoustic
metamaterials have developed from the research and findings in photonic (or optical) metamaterials. A novel optical metamaterial was
originally proposed by Victor Veselago in 1967, but not realized until some 33 years later. John Pendry produced the basic elements of
metamaterials in the late 1990s. His materials were combined, with negative index materials first realized in 2000, broadening the possible

optical and material responses. Research in acoustic metamaterials has the same goal of broader material responses with sound waves.
The 22nd Lomonosov Conference on Elementary Particle Physics. 21-27 August 2025



VINCENT'S CLASSIC MASS-IN-MASS CHAIN.
LONG-WAVE APPROXIMATION

(02u d0%u
— 2
52 = Sm3,z ~ @or(u—U)
)
02U
3¢ = —wg, (U —u)
\

There are acoustic w_, optical w, dispersion branches and a

,K K I
Wo1 = [~ Woz2= |7, WOm= | Sm = AWy
m M m band gap
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MODIFIED MASS-IN-MASS CHAIN

( d?u, , 1+e 1 1 e\ 4y |, mx N
<m T2 =KW, —uy) +I(u,_1 + ups1 — 2uy,) Wi‘? +< +5)1+gsm - )t

d°U . 1+e 54_3"222_( 1 -22)168)/ . o X
kM dtzn=K(un—Un)+](Un_1+Un+1—2Un) iZy (1+(1+Z)1+8SIH 2) 1+Z(1+4ysm 2) ez SN2,

2.5

I
E Z:j Wi

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Wm

0.8 0.9 1.0

Typun B.O., Haspuuxuii U.B., Kupees JI.JI., Annpees ILA., Mmonmma F0.B.  There are acoustic and optical dispersion branches. There
MO,Z]I/I(i)I/IHI/IpOBaHHaH OCIIOYKa MacCa-B-MacCcCe. I/ISBCCTI/IH BBICIHINX yqe6HBIX

may or may not be a band gap
3aBeieHUi. Marepuanibl aeKTpoHHOM TeXHUKH. 2024;27(4):330-340.
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MODIFIED MASS-IN-MASS CHAIN. LONG-WAVE APPROXIMATION.
GENERALIZATION OF THE REAL KGF EQUATION

(924 , 0%u ,
atz zsma 2 wOl(u_U)
{ VIIIIDDIIIIIIIIIIIIIIA
0%U 02U 4 String # 1
— =52 w3, (U —u) y 2
Lotz Mgzz 702 Z .
1 elastic gasket
7
7 i
7

I ] String # 2
Wo1 = /K Woy = /K Wy = | — N Y
o1 — |~ 02 — | m
m M m M The transverse wave

Lo I I =
Sm = AW = = — = — = -
m m Sm = QWy M y K Z i
. (92y ,0%u
Special case: 2z =5 3,27 wo(u—U) .
Wmp = Wy => Sp=Sy=S 02U 262U 5
9z =5 oz welUmw
(1 S) 2 2 0.0 0.5 1.0 15 2.0 2.5 3.0
+-|mTeXx
wi= et X
5 There are acoustic w_ and optical w, dispersion branches.
4 1+ ¢ n (1+§)n'2x2 e 1+ 1 (1 N ) 2) .
T 3 5 . . YIex4) | méx
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THE CASE OF EQUALITY OF CHARACTERISTIC FREQUENCIES w,,, AND wy

,I ,] . . _

IN THIS CASE, THERE ARE ONLY TWO TYPES OF OSCILLATIONS

m;

IN-PHASE OSCILLATION OF TWO MASSES OSCILLATION OF TWO MASSES IN ANTIPHASE
ka ka
2 _ 2 52 )
W= = 4wm SIn® —- wi = wj, + wh, + 4w?, sin? >

In the case of the long-wave approximation, for the acoustic branch of the dispersion, we have an equation that
coincides with the only "acoustic” branch of the dispersion for the classical chain of identical masses in the case of the

long-wave approximation.
w? = s?k? w-=Ssk - linear law of dispersion

For the optical branch of the dispersion, we have w2 = w3, + w5, + s?k?

The law of dispersion coincides in appearance with the single "optical” branch of the dispersion of the classical chain of
connected identical oscillators in the case of the long-wave approximation and differs from it by adding a constant term

to the right-hand side w3,.
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IN-PHASE OSCILLATION OF TWO MASSES

= & W——W—@—W—@—\W>

m m m

I
I
| |
L - - — - — — - 4

A chain of identical masses

The acoustic branch of the oscillations corresponds to the case when the masses m; and m, are stationary relative to each other (they move in
phase - as a whole). At the same time, the internal spring K; remains undeformed all the time, and in two classical chains (m4, I;) and (m,,
I,), common-mode acoustic waves of the same amplitude, phase, and frequency propagate with the law of dispersion, which coincides with the
acoustic law of dispersion for each chain separately:

~ ka
Ww_ = 2w,y Sin -



THE PROBLEM OF TWO BODIES INTERACTING ACCORDING TO THE
HARMONIC LAW

! )7

In the problem of two bodies interacting by harmonic law, mass m; and m, relative to each other fluctuate in antiphase around the center
of mass, with frequency w,.; corresponding fluctuations given mass u spring stiffness K; and length L.

— mim; _|Kq
M mqi+m, a)rd _ u
my m L m
L1= L L2= 1 =2 -1 L1+L2=L
mi;+m; mq+m, Lq myp
L
L mq+m, my L mp+m; mp
L1 Ly 1 m, 1 .u 1 L2 L, 1 m, 1 u 1
_ |KL1 _ KLz _ |mp+m, _ K
wTd - - Kl == _—
my my mym; u
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OSCILLATIONS OF TWO MASSES IN ANTIPHASE

A chain of coupled oscillators

Optical branch of the oscillations corresponds to the case when the masses m; and m, relative to each other fluctuate in antiphase around
the center of mass, with frequency w,.4 corresponding fluctuations given mass u spring stiffness Kj . In this case, the type of the final law of
dispersion coincides with the law of dispersion for a chain of identical coupled oscillators.

ka
wy = \/40)?,1 sin? -+ wZ,



THE QUANTUM RELATIVISTIC KLEIN-FOCK-GORDON EQUATION

The real partial differential equation of the second order KGF

The law of dispersion w? = w3 + s k?

Formally corresponds to the complex-valued quantum-relativistic KGF equation (u © ¥, s,,, © ¢, wg < m,c?/h):

d%u 2 0%u 2 d%Re¥ > 0?Re¥ (mecz)z 9%Imy > 0%ImYy (mecz)2
—_— = —_— = o = — — —
5z = S,z — Woll Yo C° . Re¥ and Yo C° 2 . Imy
¥ = Re¥ + i Im¥W
0%u 0%u 2 2 2
__Sz__wgu N 0°¥ CZG‘IJ m,cC w
2 — °m g, 3 w5 =C" 5 —
at 0z Ot2 dx2 A
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THE QUANTUM-RELATIVISTIC DIRAC EQUATION

A further development of relativistic quantum theory is Dirac's system of first-order differential equations with a

four-component wave function:
3 3 3
ihalllq) = Hp,|¥,) Hp, = hwoag + ¢ z a;jPj = Mmec?ay+c Z a;p;
j=1 j=1
Here ag, a4, a», a3 — Dirac alpha matrices4x4, expressed through a zero 2x2 matrix 0,, unit 2x2 matrix I,, and
Pauli matrices 2x2

_ 12 02 _ 02 01 _ 02 O-2> _(02 0-3>
ao_(oz _12>' OLl_(% 02>' &2 _(Uz 0,/ *3 = o3 03/’

0=@ D = P m=( %)

a0 +ajoy; =04 6,j=01,230#j) wu oc]2 =1, j=0,1,2,3. Here I, - unit 4x4 matrix

From the Dirac equation, four independent KGF equations can be obtained, each for its own component of the wave
2\ 2

. . a2y, 92w,
function¥; (i =1,2,3,4). ?qz" = czvq;l — (m;C ) y,

1. Coxonos, A.A. KpanToBas teopus monsi / A. A. Cokonog, JI. . UBanerko. — MockBa ;, Jlenunrpan : ['oc. u3a-Bo TexH.-TeopeT. Jut., 1952. — 780 c.
2. MarseeB, A.H. AtoMHas ¢u3uka : yueOHoe nmocodue s cTyneHToB By30B / A. H. MarBeeB. — 2-e u3g. — Mocksa : OHUKC, Mup u OOpazoBanue,
2007.—430c.
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GENERALIZATION OF THE QUANTUM RELATIVISTIC KLEIN-FOCK-GORDON EQUATION

Based on a system for long-wave approximation for a modified mass-in-mass chain in case s,;, =s); = s

’u o 0%u 2 9%u 5 d%u 2
2 = Sm3s — Wor(u—U) 7 =S 57~ ws(u—"U)
02U 2 02U 2 - 02U 2 02U 2
9tz M3,z wp2(U —u) 92 % a2 wp2(U —u)

using matching

’K Mmec? ’K mgc?
u(_)lluaUH(pasm(_)CasM(_)Ca Wo1 = ;(_)eTa Wo2 = E(_) ]; s mf/me(_) m/M

We have constructed a system of second-order differential equations, which is a generalization of the quantum
e : 0’y ,0%y (mecz)2 _
relativistic KGF equation 5z = € 5xz . Y.
d%u 2 0%u 2 U (62111 2 0%Y MeC? 2 2
— = 54— — — - =2t — m
9z~ ° 922 wor (u ) R < otz © 972 ( h ) (¥ — ) £ = m_(Z
62U 2 aZU 2 2 2 2 2 M me
at? 0z2 \_atz C 972 Y (®—-VY)

This system has "acoustic” and "optical” dispersion branches:

E? = c?p? nmm 0% = c?kZ,

2
2 _ 2.2 242 22 2 _ 2p2, (Mmec®\® | (myc?
E—cpz+(mec)+(mfc)or 05 = ckz +(— +{——) -

Here k, =p,/Aiu N =E/h

The 22nd Lomonosov Conference on Elementary Particle Physics. 21-27 August 2025



GENERALIZATION OF THE QUANTUM-RELATIVISTIC DIRAC EQUATION

The following system of first-order differential
equations is a generalization of the Dirac system
of equations for a free electron in the one-
dimensional case for the case of the projection of
spin h/2 on the axis z:

([ oy, 0¥; m,c?
lh? = —ihc Py + m(‘l’l — @)
ih% = —ihc 06‘1;1 — \/Z% (W — bs)
| ih% = —ihc 6523 + ﬁf_z (@) — 1)
\ih% = —ihc aaczl - \/T%C:_Z(CP?, —¥3)
Here ¢ = — = (;nl—i)z

mgc?  emgpc® (mf)3 mec? _ £3/2 mec?

ive?z  Jieez | \m,) Viter Vive?

The three-dimensional case:

L2 oY, 0¥, 0% Mec?
lh?= th(- iz + i 3y 3 ) +m(‘l’1 — @)
i % = ihc (— a:f - iaal';]f 6611;4) + \/Z%(‘Pz —®,)
lh% = ihc (— aaiz + ia;;z - aaq;l) — \/rln:—c; (W3 — D3)
lh% = ihc <— 06‘1;1 - iaaq;l aatzz) - \/Z% (W, — @)
lh% = ihc (— 666135: + laaq;4 — 0;?) + \/fli_cj_z(¢1 - %)
lh% — ihc (— aaqjj —i aaqu aaq?) + _;ni C;_ (0, — ¥3)
( )
( )
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GENERALIZATION OF THE QUANTUM-RELATIVISTIC DIRAC EQUATION

This system has "acoustic” and "optical” dispersion branches:

E=Zcp,
N - ’
E = i\/czp§ + (myc?)? + (mfcz)z = i\/c2 p2 +mic*(1+€2) \\ /'
\\ // pz/mec
All branches of the dispersion relation are presented. The dotted lines -2 -1 e 0\\ 1 2
are for the linear case of variance. Solid lines for the nonlinear case of 7 AN
variance E = +c p,E = +/c? p2 + m2c*(1 + €2 ) with the parameter ,/ \\

e =0.5. Dotted lines for the nonlinear case of variance E =

Jc2 p2 + mZc*( parameters £=0 ).

1. Turin V. O., Ilyushina Y. V., Andreev P. A., Cherepkova A. Yu., Kireev D. D., Nazritsky I. V. A Mass-in-Mass Chain and the Generalization of the Dirac Equation
with an Eight-Component Wave Function and with Optical and Acoustic Branches of the Dispersion Relation. Russian Microelectronics, 2023, Vol. 52, Suppl. 1,
pp. S299-S305.

2. OnHoMepHast IIEMOYKa «Macca B Macce» U 00o0menne ypaBHenuii Kneitna-I'opaona-®@oka u Jupaka, Kak ¢ «ONTHYECKON», TaK U C «aKyCTUYECKOI» BETBIMU

mucnepcunt / B. O. Typun, 0. B. Umommna, II. A. Anapee [u ap.] // EcrecTBeHHble M T'yMaHWTAapHbIE HAayKd B COBPEMEHHOM MHpe : MaTepuaibl VI
MexayHapoqHO Hay4YHO-NPAKTUYECKON KoH(epeHIuu, nocBsaménHas 115-netuto Jlakuna [L®., Opén, 15-17 wmas 2023 roma. — Opén: OprnoBckuii

rocynapctBeHHbii yauBepcutet um. M.C. Typrenesa, 2023. — C. 220-235.
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GENERALIZED DIRAC EQUATION IN THE CASE OF THREE DIMENSIONS
IN DIRAC'S NOTATION

0
lhasz) HD |¥s), HD8

me

\/TAO +\/7AO++C Z] 1 ]p]

Here |¥g) is an eight-component complex wave function; Ag_, Ag4+, A1, Ay, A3 - 4x4 matrices, which are a
generalization of Dirac alpha matrices.

For generalized Dirac alpha matrices, the following relations hold:

0 0 I, -—I

_( 02 04 _ (%0 TG _ (% 04) _((12 04) _((13 04)
AO__(—OLO ao)»Ao+—(04 04 )'A1_<04 g A2 = 04, oy Az = 0, o3

I —1
AgiAo- +Ag_ Aoy = A3_ + A3, = ( ‘; / 4)
—ly g
Ao_Aj + AjAo_ = 08, A0+Aj + AjA0+ = 08 ) ] = 1, 2, 3,
AjA;j+ AjA; =0g,0,j =1,2,3( #J).
Here Og and Ig are the zero and unit matrices of dimension 8x8. The generalized Dirac equation yields four independent systems
of generalized KGF equations, each for its own pair of wave function components ¥; and ®; (i =1,2,3,4).
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COVARIANCE OF THE GENERALIZED DIRAC EQUATION

2
In the stationary inertial frame of reference: E—H=E-— \Z%AO_ WAOJ, C PpxA1 — CcPyA; — c P A5
.0 9 o9 D
Here E = lha, Dy = lhcax , Dy = lhcay , Dy = lhcaz

We express £ — H in the stationary inertial frame of reference using £’ and p., Py, Dz in moving inertial frame of reference

(with velocity v along the axis x) :

E-H=y(E'+vpy) - WA \/TA(H cy(;a;+c—';E')A1—cA2;3’y—cA3ﬁ;=---

' mec?

= (E — cprl)(a + bA,)y (1 — —A ) (@AO + \/iAOJr + cA, Py + cA; pz> (a — bA;)
/\, - /\’ " a /\’ Il /\’ a 1

Here E' = th, Dy = —lhca , Py = —tha—y’, Pz = —lhca, Yy =

1+(2)°

If (a+ bA,))y (1 —EAl) =a—bA; wehave (a+ bAl)(E' — ﬁ)= (E" — ﬁ’)(a — bA;)

(E "—H ’)‘P’ = 0 there 1s a generalized Dirac equation in a moving inertial frame of reference. Covariance is proven!
mgc?

Vi+e?

E'—H =E - Ao — A0+ cPyAy — cPy Ay — cPyAs

1+&2
W' = (@ — bA)W
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It can be shown that @ = X2 u b = L& /%1 Accordingly, we find an explicit expression for ¥':

(-

Y+1
\/ Y2 - |ﬁ|\/ 2 ¥
qjl1\ y+1 B |y—1
/ g, Z g7 ¥
q’la y+1 B |y-1
, — =y Wy, L Ty
l}l’ — llu 4 ]/+ I 2 4 |ﬂ| 2 1
'y o lﬂl Yty _F Y1y
o', 2 L BlN 2 T #
(D'3 Y+1 L |y—1
\@'4/ R TN RPRRE
y+1, _ B |r-1
7 Pa 1Bl 2 P2
y+1 . B |r=1
\ ERCITTNE Cbl/

Approach from: CoxosioB, A.A. KBantoBas teopus nossi / A. A. Cokonos, /1. 1. UBanenko. — Mockaa ;, JIenunrpan :
['oc. u311-BO T€XH.-T€OpET. JUT., 1952. — 780 c.
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THE ORBITALANGULAR MOMENTUM AND SPIN FOR THE DIRAC EQUATION

The orbital angular momentum operator: L=#%xp=—ih #%XV

This 1s a vector operator, so it can be represented as the sum of projection operators: L=1,6 + f,ye?y +L,é,

The angular momentum projection operators are defined by:

)

R ) ) . d d . 2 2 . d 2
Ly = yb, — zpy = —ih (yaz_zay> y = ZPx — XP, = —ih (Za—xa) L, = xpy, — yp, = —ih (x@— a)
3

-~

Dirac Hamiltonian for a particle moving in a centrally symmetric field: H=m,c?ay +c z ajp;+V()r)

We'll find it [HL, | = —ikc(a,p, — “3253/) Matrices are introduced: Jj=1

_ (o1 0y _ (02 02) _(03 02) 0 1 0 —i 1 0
Ux_(()z 1)’ 0y—<()2 05)’° 0z = 0, o3 Pauli matrices: 01=(1 O)’ 02=(l. 0), 03=(0 _1)

We have: [HUX] — mecz[aoax] + Cﬁx [alax] + Cﬁy [azo-x] + Cﬁz [a30x]
It can be shown that:  [ay0,] = [a 04| = 04 [a,0,] = —2ias; laso,] = 2ia,
_ h , . A
We have: [H io-x] = th(“sz - a3py)
~ (. h .
. [H (Lx + Eax>] =0 The spin is equal to 1/2
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THE ORBITALANGULAR MOMENTUM AND SPIN FOR THE GENERALIZED DIRAC EQUATION

2

Generalized Dirac Hamiltonian for a particle moving in a . myC
centrally symmetric field: H = mA 11 82 A0+ Tt z j B+ V()
We have: |HLy| == ihC(A323y — AzP,)

. . g, O g, 0 g, O
We introduce matrices 2, 5 3 : Y, = (OZ ai) Yy = <OZ aj,) Y, = (Oz Uj)
Marpuipl 07,3 OBUIM BBEICHBI 5 = <01 02) 5 — (Uz 02) 5 = (Us 02)
IpU aHaju3e ypaBHeHus Jupaka: * 0 o1/ 77 0, o) °° 0, o3

- - 0 1 0 —i 1 0
Paul t . = = —
aull matrices 01 (1 0)’ () (l 0 )’ 03 (O _1)
We have |A2] = 2= —[Ag_ 2] + + 2 [Aoy 51) + cPelAr 1] + cpylAs 51] + cplAs E1] + V()]
MoHO Mmokasarh, 4ToO: [Ag_ Zy| = [Ags 2] = Og [4, X.] = —2iA; A3 2| = 2iA,

_h , . .

We have [H EZX] = —Lhc(Agpy — Azpz)

(. h
—> [H (Lx + EEX>] =0 The spin is equal to 1/2
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THE PROBLEM OF THE HIERARCHY OF FERMIONIC MASSES

The problem of the hierarchy of fermionic masses is one of the unsolved problems of particle physics
and lies in the fact that the observed masses of the three generations of fermions (leptons and quarks)
differ tenfold, despite the fact that the other properties of these particles and their quantum numbers are
the same.

In the Standard Model, all fermions (both quarks and leptons) form three generations. Each
generation is a collection of different types of particles, and the generations differ only in greatly varying
masses. There are currently three generations of leptons. First generation: electron, electron neutrino.
Second generation: muon, muon neutrino. Third generation: tau-lepton, tau-neutrino. An electron has a
mass of 0.511 MeV, the mass of a muon 1s 105.7 MeV, and the mass of a tau lepton is already 1777 MeV.
At the same time, all these particles have the same set of quantum numbers.



CHAIN MASS(-IN-MASS)?
GENERALIZATION OF THE REAL KGF EQUATION

: : L 5
One-dimensional modified mass(-in-mass)? chain with the addition of a harmonic One cell of j[he.mOdlﬁ?d chain “?ass( in-mass) ® the problem
of three bodies interacting according to a harmonic law

interaction between neighboring masses.
Generalization of the real KGF equation :

The equation of motion (Newton's Second Law of Motion):

[ d?u, (d?u _ 5 0%u 2 2
d? d?v ) 9%v 2 2
{ 5 d;n — KZ(Wn - vn) + Kl(un — vn) + 12 (vn—l + Un+1 — ZUn) < F =S5 ﬁ — (1)232(77 — W) — (1)122(17 — u)
d®wy, DW 20 02 (W — u) — whss (W — 1)
\m3 dt2 = KS (un — Wn) + Kz(vn — Wn) + 13 (Wn—l + Wn+1 — 2Wn) L dt? — 953 522 133 233

_ |K1 _ K> _ |K3 _ | K1 _ K> _ |K3 |k | _ |13
W11 = m—lawzsz— m—29w133— m—saw122— m_z’ W33 = m—37w131— m—1,w1— m—lawz— m—z,ws— m_3

S1 = aw,, So = aAwoy, S3 = AWwgj



Generalization of the real KGF equation in case w{ = w, = wj :

2 2\ 2
(d2u 0%u (dzll’ 02y m.c? m,c
<2 2 2 — 29 7 e _ _ (Mgt _
2z =S 5z~ WU —v) — Wiz u-w) acz ¢ 322 ( h ) (¥ — ) ) (P-4
d?v 2 0%v 2 2 — 2 2 2 2 2\ 2
e =St — Wi (V—w) —wipn(v—u a*e _ 20°®  (mgc mgc
dt2 322 232( ) 122( ) <F_C = : (@ —A) — = (@ —W)
w _ 20w _ 2 (W —1u) — w22 (W —v) i 2 2 2
— — W133 — — W333 — d?A 92/ M, C2 mpc
Ltz ~ 7 oz =M A—w) - (™) (A-o)
L dt? 022 h h
Like 1t was done for mass-in-mass chain:
52y 82y r62'{' 2 029 MeC? 2
_ 2 2 o"r _ _ _
oz =S 52— wor(u—"U) otz ¢ 922 ( h ) (¥ — )
—
9°U _ 5 0%U 2 02 5 02 mgc? 2
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We are looking for a solution to a system of equations in the form of waves with complex amplitudes.ii , ¥ and w

Here

CHAIN MASS(-IN-MASS)?

~ Ji(kzy—wt) . Uy = ﬁel(kzn—a)t) , W, = Wel(kzn—a)t).

u, = tie

After that, we obtain a system of homogeneous linear algebraic equations:

AN\

2 2 )ﬂ + w%21ﬁ + (1)%31‘7‘7 = O

( .o ka
(wz — 4wfsin® == — wi; — Wiz

~ . ka ~ ~
C()%zzu + ((Uz — 4‘(1)% Sln2 7 - a)§32 - a)%zz) U+ (l)%:gzw == 0 .

~ ~ . 2 ka ~
2230l + w3537 + (wz — 4wjsin® = — wizz — w%33) =0

w
| P133
_ | K1 _ | Kz _ |K3
w121 = . W32 = m, w133 = s
|k |k _|Ks
W122 = m_z’ Wp33 = m—3 , W131 = m_1 )
11 12 _ I3
W= |—,Wy = |—,W3 = |—
miq myp ms
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CHAIN MASS(-IN-MASS)?

Let us consider an interesting case of equality of the characteristic frequencies of all three chains.:

on= [t =w,= [=g.= [B=gy
n= [, T02= [~ 03 [0 -= Oc

The law of dispersion for a chain of identical masses is a classical one-dimensional infinite chain of masses m arranged with a
period a and connected by springs with rigidity I :

2 — a2 cin2ka
w*” = 4wgy sin .

and
w?, = 4 w, sin® % + |p|i.§2—4q :
Here
Ip| = Wiy + Wiz + Wiz + Wi, + wizz + Wis3
and

2 2 2 2 2 2
q = W1pW733 T WipW533 + WY33W353, +

2 2 2 2 2 2
TWip1Wi33 T W1 W333 T Wi31 W33 +

2 2 2 2 2 2
T Wi W37 T WippWi31 T WI31W332 -
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CHAIN MASS(-IN-MASS)?

6.0
5.0
4.0
3.0

2.0 ——

Frequency

1.0

0.0
00 01 02 03 04 05 06 07 08 09 10

Wavenumber

Acoustic (black lines) and optical (gray lines) dispersion branches for the modified mass-in-mass chain? at f; =1;/K; =1,
e2, =my/m, =10, €53 = my/m3 =2, k1, = K1 /K, = k3 = K, /K3 = 2. In this case I,/I, =€, =10, L/I; =¢%3 =2, B, =1L /K, =
B3 = I3/K3; = 0,2. The frequency along the vertical axis is plotted in units of w.},, and the wavenumber along the horizontal axis is set in units
of kypax = T/a.

We consider modified one-dimensional infinite chains of mass(-in-mass)?. Such chain can be considered as new classes of acoustic
metamaterials. And there is the possibility of further generalization of the equations of relativistic quantum mechanics in the case of equality of
the characteristic frequencies of individual chains of identical masses. It concerns the problem of the hierarchy of fermionic masses. In the chain
mass (-in-mass)? two optical dispersion branches arise, which can correspond to two massive particles, within the framework of one
mathematical model, which can correspond to two generations of fermions.
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CHAIN MASS(-IN-MASS)3
GENERALIZATION OF THE REAL KGF EQUATION

The equation of motion (Newton's Second Law of Motion):

fml % = K, (v, —uy,) + Kis(wy, —uy) + Kya(2,, —uy) + I (U g + Uy — 2u,,)

< 2 % = Kys(Wy, —vp) + Kyu(z,, — vp) + Ki2(z — vp) + L(vp_q + vyyq — 205)
ms d;:;n = K34(z, — wy) + Kizs(uy —wy) + Kos(v, — wy) + (wp_q + Wpyq — 2wy,)
Tt ddztzzn = Kia(up — zp) + Kpu (Vg — 25) + Kza(wy, — 2,) + 3wy + Wyyq — 2wy)

Generalization of the real KGF equation :

P Ty )~ ody W) — s (- 2)

) % - S%%_ W53,(V—W) — w34, (Vv — 2) — wip (v —u)
C:T‘;V - 53%227‘;, — w53(W — 2) — wis(W — u) — wizs(w—v)
\ Z_z - S‘%ZZTVZV — wF44(Z2 = U) — 0544 (2 — V) — WF4y(z — W)

Generalization of the real KGF equation in case w; = w, = w3 = Wy, :

(% - 522271: — Wi (U —v) — 0l (u—w) — wiy(u-2)

) % = SZ%_ ‘U%32(v —w) — w§42(v —z)— wfzz(v —u)
C:T‘;v - SZZZT‘Z — w5izs(W = 2) — wi3(W — u) — wizs(w —v)
\ le_ij - 52?327‘/2‘/ — w34 (Z —U) — W54 (2 — V) — W54 (z — W)
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(d?u

d0%u

( 2 2
W=szﬁ—w%21(u—v)—a)f31(u—w)—a)f41(u—z) C:Tf 25;275;1_(m;c2) (¥ —o) — mzcz) (5”—/1)—(
d?v 0%v 2 2
F=szﬁ—w§32(v—w)—w§42(v—z)—w%22(v—u) C:Tf=c2?;7f—(micz) ((P—A)—(ml:z) (4’—@)—(
d*w 0w — ) 22 2 2,2 2,2
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di2 572 343 ( ) 133( ) 233 ( ) 2 = C o ( . ) (A—0) ( . ) (A—-Y) (
d?*z d0%w 2 2 25 2 21 2
— 2 ) ) ) a2 _ dce _ 20%0  (mpc . _(mgc . .
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(22w 262_‘1’_(’"602 Z(qf—cp)—(mgcz 2 @ — A)
dt? 0z? h ) h ) (
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<aztz_ 922 (h)(qb A) (h
d?A 2 02A M C 2 mpc? 2
Ldt? 622_( n (A_!P)_(T) A=)
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h

Number of masses :

CHAIN MASS(-IN-MASS)¥

() Wy =) o (M) @ =) — (M) (=)

(7Y gty — ) o (M) g, ) — (M) g, ) -
(mifcz)2 (Wy — W) e (”L3’Vh—102)2 Wy —Wy_) — (’"3;502)2 (W, — ) —
L RN G (L RN L O

mae®® g gy (M) g gy (s g gy (e g )

h

N(N-1) 1 2 3
1 - + +
2 + - +
3 + + -
N + + +
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CONCLUSION

A modified mass-in-mass chain with the addition of harmonic interaction between neighboring internal masses is
considered. In the case of the long-wave approximation, this chain is described by a system of equations that is a
generalization of the real Klein-Gordon-Fock equation. Based on this system, we have constructed a system of equations that
1s a generalization of the complex — valued Klein-Gordon-Fock equation of relativistic quantum mechanics. Next, we
constructed a generalization of the Dirac equation with an eight-component wave function, which has "optical" and "acoustic"
dispersion branches, each with positive and negative energy. Unlike the Dirac equation with a four-component wave function,
which has only an "optical" branch of dispersion, the generalized Dirac equation with an eight-component wave function has
both "optical" and "acoustic" branches of dispersion, each of which is represented by branches with positive and negative
energy. It is necessary to give a physical interpretation of the nature of the new solutions of the generalized Dirac equation for
the optical and acoustic branches of dispersion.

We consider modified one-dimensional infinite chains of mass(-in-mass)?. Such chain can be considered as new
classes of acoustic metamaterials. The connection of the modified chains under consideration with the possibility of further
generalization of the equations of relativistic quantum mechanics and with the problem of the hierarchy of fermionic masses is
discussed. In the future, we plan to consider these chains for the case of equality of the characteristic frequencies of individual
chains of identical masses. In the chain mass (-in-mass)?, presumably, three optical dispersion branches can arise, which can
correspond to three massive particles, within the framework of one mathematical model, which can correspond to three
generations of fermions. The developed theoretical approaches may also be useful in constructing the theory of dark matter
and energy.

The authors would like to thank Oleg Ivanovich Markov, Evgeny Alexandrovich Belkin, Nikolai Vladimirovich
Malai and Ilya Dmitrievich Kopchinsky for an interesting discussion. The part of work was carried out within the framework
of the program. "Sirius. Summer: Start Your Project", the project task is "Wave propagation in an acoustic metamaterial based
on a classical and modified one-dimensional mass-in-mass chain".
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