

Statistical mechanics of multi-Hamiltonian systems

Nikita N. Levin
Tomsk State University,
Laboratory of High Energy Physics
Data Analysis

Presentation Overview

- 1. Problem & Tasks
- 2. Introduction

Multi-Hamiltonian systems

Nambu-Poisson mechanics

3. Statistical mechanics

Generalized Gibbs distribution

Special coordinate system

Thermodynamic quantities

- 4. Examples
- 5. Conclusion

Problem & Tasks

Problem

We consider the statistical mechanics of multi-Hamiltonian dynamical system in four-dimensional phase space.

We need to...

- ...establish an invariant measure on the phase space based on Poisson geometry.
- ...derive explicit expressions for the partition function and the generalized Gibbs distribution in the special coordinate system.
- ...extend these expressions to the case of an arbitrary coordinate system.

Multi-Hamiltonian systems

Mechanical systems that admit several pairs of Hamiltonians together with their associated Poisson brackets $(H_1, \omega_1), (H_2, \omega_2), ...$, which are not connected by a coordinate transformation yet lead to the same equations of motion, are referred to as multi-Hamiltonian systems (R.L. Fernandes, 1994).

$$\frac{\mathrm{d}x^{i}}{\mathrm{d}t} = \underbrace{\omega_{1}^{jk}}_{1} \frac{\partial H_{1}}{\partial x^{j}} \frac{\partial x^{i}}{\partial x^{k}} = \underbrace{\omega_{2}^{jk}}_{2} \frac{\partial H_{2}}{\partial x^{j}} \frac{\partial x^{i}}{\partial x^{k}} = \dots$$

$$\{H_{1}, x^{i}\}_{\omega_{1}} = \underbrace{(H_{2}, x^{i})}_{1} \underbrace{(H_{2}, x^{i})}_{2} \underbrace{(H_{2}, x^{i})}_{2}$$

Nambu-Poisson mechanics (Y. Nambu, 1973; L. Takhtajan, 1993)

Consider a phase space N, $\dim N = n$ with local coordinates x^i , together with a set of functionally independent integrals of motion H_k $(k = \overline{1, n-1})$.

In this setting, the dynamics of the system can be expressed within the Nambu–Poisson formalism

$$\frac{\mathrm{d}x^{i}}{\mathrm{d}t} = \{H_{1}, \dots, H_{n-1}, x^{i}\} = \varepsilon^{i_{1}\dots i_{n-1}i_{n}} \frac{\partial H_{1}}{\partial x^{i_{1}}} \dots \frac{\partial H_{n-1}}{\partial x^{i_{n-1}}} \frac{\partial x^{i}}{\partial x^{i_{n}}}, \quad i = \overline{1, n}, \quad (2)$$

where $\{H_1, ..., H_{n-1}, x^i\}$ denotes the generalized Nambu bracket, ε is the completely antisymmetric Levi-Civita tensor.

The Nambu bracket, which generalizes the Poisson bracket, can in turn be reformulated through the Schouten bracket:

$$V^{i}(x) = \{H_{1}, \dots, H_{n-1}, x^{i}\} = \frac{(-1)^{\frac{n(n-1)}{2}}}{n!} [[\eta, H_{1}], \dots, H_{n-1}],$$
(3)

where $V^{i}(x)$ are the components of the velocity field, and $\eta = \varepsilon^{i_{1}...i_{n}}\partial_{i_{1}}\wedge\cdots\wedge\partial_{i_{n}}$ is the highest tensor invariant of the system in the sense that $\mathcal{L}_{V}\eta = 0$.

Schouten bracket

$$\hbox{\tt [.,.]}: \mho^p \times \mho^q \to \mho^{p+q-1}$$

where $abla^n$ is denotes the space of polyvectors of rank n.

This represents a particular case of a multi-Hamiltonian system.

Generalized Gibbs distribution (J. W. Gibbs, 1902)

We consider the canonical ensemble of \mathcal{N} weakly interacting copies of a multi-Hamiltonian system. For such a system, the canonical Gibbs distribution takes the form:

$$f = \frac{1}{z}e^{-\frac{H}{\theta}}, \quad z = \int e^{-\frac{H}{\theta}}d\Gamma, \quad z = \frac{1}{\mathcal{N}!}(Z)^{\mathcal{N}}.$$
 (4)

Here f denotes the distribution function, Z the partition function per system, $d\Gamma$ the phase space volume element, H the Hamiltonian, and θ the temperature.

A key point is that H is an additive quantity, and in our case we use the form: $H = \alpha_1 H_1 + \alpha_2 H_2 + \cdots + \alpha_{n-1} H_{n-1}, \ \alpha_k \in \mathbb{R}, \ k = \overline{1, n-1}.$

The volume element of a four-dimensional phase space can be expressed as the contraction of a two-form $\Pi \in \Omega^2$ (V. Arnold, Ordinary Differential Equations):

$$d\Gamma = \varepsilon^{ijkl} \Pi_{ij} \Pi_{kl} dx^1 dx^2 dx^3 dx^4, \quad \Omega^{ik} \Pi_{kj} = \delta^i_j.$$
 (5)

Here Ω represents a linear combination of the Poisson bivectors $\omega_{1,2,3}$, constructed via equation (3) using the antisymmetry of Schouten bracket. In this setup, however, the bivector Ω is degenerate, which prevents the formulation of a statistical mechanics.

The problem!

The task is to identify a <u>non-degenerate</u> bivector for the multi-Hamiltonian system with a four-dimensional phase space.

Special coordinate system

To address the degeneracy issue, we switch to a special choice of coordinates:

$$\dot{x^1}=0$$
, $\dot{x^2}=0$, $\dot{x^3}=0$, $\dot{x^4}=1$; $H_1=x^1$, $H_2=x^2$, $H_3=x^3$.

The original bivector is then modified with the help of its dual bivector:

$$\Omega_{\rm tot} = \Omega + \kappa \tilde{\Omega}, \quad \tilde{\Omega}^{ij} = \frac{1}{2} \varepsilon^{ijkl} \Omega_{kl}.$$
(6)

In this form $\Omega_{\rm tot}$ is non-degenerate ($\det\Omega_{\rm tot}\neq 0$), serves as a Poisson bivector ($[\Omega_{\rm tot},\Omega_{\rm tot}]=0$), remains invariant ($\mathcal{L}_{\rm V}\Omega_{\rm tot}=0$), and preserves the Hamiltonian equations of motion ($\dot{x}^i=\{H,x^i\}_\Omega$). Here κ denotes a real parameter.

In the chosen coordinate system, the bivectors can be conveniently expressed in matrix form:

$$\Omega = \frac{1}{(\alpha_1^2 + \alpha_2^2 + \alpha_3^2)} \begin{pmatrix} 0 & 0 & 0 & -\alpha_1 \\ 0 & 0 & 0 & -\alpha_2 \\ 0 & 0 & 0 & -\alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 & 0 \end{pmatrix},$$

$$\tilde{\Omega} = \frac{1}{(\alpha_1^2 + \alpha_2^2 + \alpha_3^2)} \begin{pmatrix} 0 & -\alpha_3 & \alpha_2 & 0 \\ \alpha_3 & 0 & -\alpha_1 & 0 \\ -\alpha_2 & \alpha_1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

It follows immediately that the modified bivector is non-degenerate:

$$\det \Omega_{\rm tot} = \frac{\kappa^4}{(\alpha_1^2 + \alpha_2^2 + \alpha_3^2)^2} \neq 0$$

Partition function in the special and arbitrary coordinate system

Using equation (5) together with (6) the volume element can be written as:

$$d\Gamma = \frac{1}{\sqrt{\det \Omega_{\text{tot}}}} dx^{1} dx^{2} dx^{3} dx^{4} = \frac{(\alpha_{1}^{2} + \alpha_{2}^{2} + \alpha_{3}^{2})}{\kappa^{2}} dx^{1} dx^{2} dx^{3} dx^{4}.$$
 (7)

Upon transition to an arbitrary coordinate system according to formula (4) the partition function of the multi-Hamiltonian system takes the form:

Partition function of multi-Hamiltonian system

$$Z_{\alpha} = \int \left| \frac{\partial (H_1, H_2, H_3, x^4)}{\partial (x^1, x^2, x^3, x^4)} \left(\frac{dx^4}{dt} \right)^{-1} \right| \frac{(\alpha_1^2 + \alpha_2^2 + \alpha_3^2)}{\kappa^2} e^{-\frac{\alpha_i H_i}{\theta}} dx^1 dx^2 dx^3 dx^4$$
(8)

Thermodynamics (L. Landau, E. Lifshitz, Statistical Physics, Part 1)

In this situation, the partition function and the corresponding distribution depend on the parameters κ and $\alpha_{1,2,3}$. Once these parameters are fixed, a unique energy representative is selected, and the partition function reduces to a function of temperature alone, $(Z = Z(\theta))$. This leads to a well-defined statistical mechanics.

Thermodynamic quantities

- $F = -\theta \ln Z \text{free energy};$
- $S = -\frac{\partial F}{\partial \theta} \text{entropy};$
- $E = -\theta^2 \frac{\partial}{\partial \theta} \left(\frac{F}{\theta} \right)$ internal energy;
- $C = \theta \frac{\partial S}{\partial \theta}$ heat capacity.

Example 1: Four-particle Toda lattice system (Baleanu D., Makhkhaldiani N., 1999)

Equations of motion

$$\dot{x}^{1} = \gamma_{1}(e^{x^{2}} - e^{x^{4}}),$$

$$\dot{x}^{2} = \gamma_{2}(e^{x^{3}} - e^{x^{1}}),$$

$$\dot{x}^{3} = \gamma_{3}(e^{x^{4}} - e^{x^{2}}),$$

$$\dot{x}^{4} = \gamma_{4}(e^{x^{1}} - e^{x^{3}}):$$

Integrals of motion

$$\begin{split} H_1 &= \frac{e^{x^1}}{\gamma_1} + \frac{e^{x^2}}{\gamma_2} + \frac{e^{x^3}}{\gamma_3} + \frac{e^{x^4}}{\gamma_4} \,, \\ H_2 &= \frac{x^1}{\gamma_1} + \frac{x^2}{\gamma_2} + \frac{x^3}{\gamma_3} + \frac{x^4}{\gamma_4} \,, \\ H_3 &= -\frac{1}{2} \left(\frac{x^1}{\gamma_1} - \frac{x^2}{\gamma_2} + \frac{x^3}{\gamma_2} - \frac{x^4}{\gamma_4} \right) \,, \end{split}$$

Here
$$\gamma_a$$
 are real parameters, with $a = \overline{1,4}$.

Example 1: Four-particle Toda lattice system

From equation (8), the partition function of the system is given by:

$$Z_{\alpha} = \frac{(\alpha_1^2 + \alpha_2^2 + \alpha_3^2)}{\kappa^2} \prod_{a=1}^4 \frac{1}{\gamma_a} \zeta_a^{\xi_a} \Gamma(\xi_a), \qquad (9)$$

where $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ (Re(z) > 0) is the Gamma function and notation used: $\zeta_a = \theta \gamma_a / \alpha_1$, $\xi_a = -\alpha_2 / \theta \gamma_a + (-1)^{a-1} \alpha_3 / 2\theta \gamma_a$, $\alpha_a = \overline{1, 4}$.

Parameter constraints

$$sgn(\alpha_{1}) = sgn(\gamma_{a}), a = \overline{1,4},$$

$$\alpha_{2} < 0, -2|\alpha_{2}| < \alpha_{3} < 2|\alpha_{2}|, \gamma_{a} > 0,$$

$$\alpha_{2} > 0, -2|\alpha_{2}| < \alpha_{3} < 2|\alpha_{2}|, \gamma_{a} < 0.$$
(10)

Figure 1 – Free energy $F(\theta)$ as a function of temperature θ , with $\alpha_1 = 1$, $\alpha_2 = -2$, $\alpha_3 = -1$, $\kappa = 1$

Figure 2 – Heat capacity $C(\theta)$ as a function of temperature θ , with $\alpha_1 = 1$, $\alpha_2 = -2$, $\alpha_3 = -1$, $\kappa = 1$

15 / 23

Example 2: The two-dimensional harmonic oscillator

Equations and integrals of motion.

$$\dot{p_x} = -x$$
, $\dot{p_y} = -y$, $\dot{x} = p_x$, $\dot{y} = p_y$;
 $H_1 = \frac{1}{2}(p_x^2 + x^2)$, $H_2 = \frac{1}{2}(p_y^2 + y^2)$,
 $H_3 = xp_x - yp_y$.

From equation (8) the partition function of the system is obtained as:

$$Z_{\alpha} = \frac{4\pi^{2}(\alpha_{1}^{2} + \alpha_{2}^{2} + \alpha_{3}^{2})}{\kappa^{2}(\alpha_{1}\alpha_{2} - \alpha_{3}^{2})^{3/2}}\theta^{3}. \quad (11)$$

Parameter constraints

$$\alpha_1 > 0$$
, $\alpha_2 > 0$, $\alpha_3^2 - \alpha_1 \alpha_2 < 0$, (12)

where $\alpha_3 \equiv \omega \in [0, 1)$ represents the angular velocity.

Figure 3 – Free energy $F(\theta)$ as a function of temperature θ , with $\alpha_1 = 1$, $\alpha_2 = 1$, $\omega = 0.01$, $\kappa = 1$

Figure 4 – Heat capacity $C(\theta)$ as a function of temperature θ , with $\alpha_1 = 1$, $\alpha_2 = 1$, $\omega = 0.01$, $\kappa = 1$

Algorithm for constructing statistical mechanics

- 1) Start with \mathbb{R}^4 , coordinates x^i , dynamics $\dot{x}^i = V^i(x)$, $i = \overline{1,4}$ and integrals of motion H_1, H_2, H_3 . The highest tensor invariant is $\eta = \varepsilon^{ijkl} \partial_i \wedge \partial_i \wedge \partial_k \wedge \partial_l$.
- 2) Using equation (3) construct the bivectors $\omega_{1,2,3}$, combine them into Ω , $\det \Omega = 0$. To remove degeneracy, introduce the modified bivector:

$$\Omega_{\mathrm{tot}} = \Omega + \kappa \tilde{\Omega}$$
, $\det \Omega_{\mathrm{tot}} \neq 0$.

- 3) Convert the bivector into a two-form, satisfying $\Omega_{\text{tot}}^{ik} \Pi_{kj} = \delta_i^i$.
- 4) Using equations (4), (5) and (8) construct step by step the volume element $d\Gamma$, the partition function Z_{α} and the distribution function f_{α} .
- 5*) For fixed parameters $\alpha_{1,2,3}$ compute the thermodynamic quantities F, S, E and C.

Conclusion

Key results:

- We have developed an algorithm for constructing statistical mechanics of multi-Hamiltonian systems with a four-dimensional phase space, based on three specified integrals of motion.
- For the four-particle Toda lattice system and the two-dimensional harmonic oscillator with coincident frequencies, we obtained the partition function, the distribution function, and the main thermodynamic quantities.

Conclusion

Future directions:

- Extension of the present construction to higher-dimensional cases (dimN = 6, . . .).
- Classification of the tensor invariants of the system constructed using the Schouten bracket.
- Analysis of other higher-derivative dynamical systems, in which the well-known problem of energy unboundedness from below arises
 (M. Pavsic, A. Smilga,...).

The work has been done in collaboration with Dmitry S. Kaparulin (Tomsk State University).

References

- Landau L.D. Statistical Physics. Vol. 1. / Landau L.D., Lifshitz E.M. Oxford, New York: Pergamon Press, 1980.
- Gibbs J.W. Elementary principles of statistical mechanics. New York: Scribner's Sons, 1902.
- Nambu Y. Generalized Hamiltonian Dynamics // Phys. Rev. D. 1973. Vol. 7. P. 2405.
- Takhtajan L. On foundation of the generalized Nambu mechanics // Commun. Math. Phys. 1994. Vol. 160. P. 295–315.
- Fernandes R.L. Completely integrable bi-Hamiltonian systems // J. Dyn. Diff. Equat. 1994. Vol. 6. P. 53–69.

- V.I. Arnold, Ordinary Differential Equations -Moscow: MCCME, 2012.
- Baleanu D. Nambu-Poisson reformulation of the finite dimensional dynamical systems / Baleanu D., Makhkhaldiani N. // arXiv:solv-int/9903002, 1999.
- Kaparulin D.S. BRST analysis of general mechanical systems / Kaparulin D.S., Lyakhovich S.L., Sharapov A.A. // J. Geom. Phys. 2013. Vol. 74. P. 164–184.
- Gerstenhaber M. The cohomology structure of an associative ring // Annals of Mathematics. − 1963. − Vol. 78, №2. − P. 267–288.

Discover.

Discuss.

Deduce.

The research was carried out with the support of a grant from the Government of the Russian Federation (Agreement No. 075-15-2025-009 of 28 February 2025)