Statistical mechanics

of multi-Hamiltonian systems

Nikita N. Levin
Tomsk State University,
Laboratory of High Energy Physics

Data Analysis




Presentation Overview

1. Problem & Tasks

2. Introduction
Multi-Hamiltonian systems
Nambu-Poisson mechanics

3. Statistical mechanics
Generalized Gibbs distribution
Special coordinate system

Thermodynamic quantities

W

. Examples

. Conclusion

(@)}



Problem & Ta

\

G

We consider the statistical mechanics of multi-Hamiltonian dynamical system

in four-dimensional phase space.

\

(

We need to...

e ...establish an invariant measure on the phase space based on Poisson

geometry.

e ...derive explicit expressions for the partition function and the generalized
Gibbs distribution in the special coordinate system.

e ...extend these expressions to the case of an arbitrary coordinate system.




Multi-Hamiltonian systems

Mechanical systems that admit several pairs of Hamiltonians together with their
associated Poisson brackets (Hj,wi),(Hg,w2),..., which are not connected by a
coordinate transformation yet lead to the same equations of motion, are referred

to as multi-Hamiltonian systems (R.L. Fernandes, 1994).

dixi_ jk@@_ jk@aixi_ (1)
bt~ 1 ox oxk T 2 B oxk

{Hl' Xi}wl {H2' Xi}wz

4/23



Nambu—Poisson mechanics

Consider a phase space N, dimN = n with local coordinates x!, together with a

of functionally independent integrals of motion Hy (k =1,n —1).

set

-

In this setting, the dynamics of the system can be expressed within the

Nambu—Poisson formalism

dx! : .. . 9H; OH,_; ox ,
_ 1 _ 11...1n—11n _
T {Hy, ... Hh—1, x'} =¢ o Bt B T Ln, (2
where {Hjy, ...,H,_1, X'} denotes the generalized Nambu bracket, ¢ is the

completely antisymmetric Levi-Civita tensor.

~N
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The Nambu bracket, which generalizes the Poisson bracket, can in turn be

reformulated through the Schouten bracket:

n(n—1)

Vi(x) = {Hy, .., Hy_1,x1} = (_111!2[[77,}11], o Ho], (3)

where Vi(x) are the components of the velocity field, and n = git~ng, A--- A d; is

the highest tensor invariant of the system in the sense that Lyn = 0.

Schouten bracket

[.,.]: 0P x U4 — ppra-t

where U" is denotes the space of polyvectors of rank n.

This represents a particular case of a multi-Hamiltonian system.
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Generalized Gibbs distribution

We consider the canonical ensemble of N weakly interacting copies of a multi-
Hamiltonian system. For such a system, the canonical Gibbs distribution takes the
form:
~H
f = 19_ 0, z=[e 6dr, 2= L(Z)N (4)
z ' ' N1 '

Here f denotes the distribution function, Z the partition function per system, dI" the

phase space volume element, H the Hamiltonian, and 6 the temperature.

A key point is that H is an additive quantity, and in our case we use the
form: H=o1Hy +asHs +-- -+ ay_1Hy 1, aox € R, k=1,n— 1.




The volume element of a four-dimensional phase space can be expressed as the
contraction of a two-form M € Q2 (V. Arnold, Ordinary Differential Equations):

dr = ™M nyMgdx'dx®dx’dx?, QM = 4} (5)

Here Q2 represents a linear combination of the Poisson bivectors wi 2,3, constructed via
equation (3) using the antisymmetry of Schouten bracket. In this setup, however, the
bivector €2 is degenerate, which prevents the formulation of a statistical mechanics.

The problem!

The task is to identify a non-degenerate bivector for the multi-Hamiltonian

system with a four-dimensional phase space.
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Special coordinate s

To address the degeneracy issue, we switch to a special choice of coordinates:

x! =0, x2=0, x3=0, xt=1;
H1:X1, H2:X2, H3:X3.

.

The original bivector is then modified with the help of its dual bivector:
= xii 1 ik
Qtot:Q‘f'HQ, QJ:§€J Qk]. (6)

In this form Qo is non-degenerate (detQuor # 0), serves as a Poisson
bivector ([Qiot, Qot] = 0), remains invariant (LyQioy = 0), and preserves
the Hamiltonian equations of motion (X! = {H,x'}q). Here x denotes a real

parameter.
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In the chosen coordinate system, the bivectors can be conveniently expressed in

matrix form:
0O 0 0 -—-o

1 0 0 0 -—a
(@+a3+a3)| 0 0 0 -—a3

0 —Q3 (6% 0

G 1 asg 0 —a; 0
(@4+a3+ad)|-a2 a1 0 0

0 0 0 O
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Partition function in the special and arbitrary coordinate s

Using equation (5) together with (6) the volume element can be written as:

1 o 2 2 2 ;
dar = deldxzdx‘*dx‘l - demﬁdxsdﬁ (7)
et diot K

Upon transition to an arbitrary coordinate system according to formula (4) the

partition function of the multi-Hamiltonian system takes the form:

Partition function of multi-Hamiltonian system

a;H;
0 dx'dx?dx3dx?

5 :/ O(Hy, Hy, H3, x*) d7X4 ! (a%+o¢§+a§)e—
“ I(x!,x2,x3,x%) \ dt K2

. ® )
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ynamics

In this situation, the partition function and the corresponding distribution depend
on the parameters x and «j23. Once these parameters are fixed, a unique energy
representative is selected, and the partition function reduces to a function of temperature

alone, (Z = 7Z(#)). This leads to a well-defined statistical mechanics.

Thermodynamic quantities

e F=—0InZ — free energy;

e S= —8—F — entropy;
Y, niropys;
o (F
E = — 27 — — 1 .
. 0 20 <0) internal energy;
e C= 92? — heat capacity.
\ V.
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Example 1: Four-particle Toda lattice system
(Baleanu D., Makhkhaldiani N., 1999)

Integrals of motion

Equations of motion 1 2 3 4
4 Hy= 4t —,
. £C B C T C S
-1 X X
X =m(e* —e*),
-2 _ x3 x! 1 2 3 4
xX“ = y(e® —e¥ ), X X X X
-3_f(x47x2) Hy=—+—+—+—,
x° = 3(e® —e¥), Y2 3 4
>4 x1 x3Y .
Xt = (e —e¥);
\_ _J 1/xt x2 x3 x4
H3:_§ —_———t———,
Y2 Y3 Y4

Here ~, are real parameters, with a = 1,4.
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Example 1: Four-particle Toda lattice system

From equation (8), the partition function of the system is given by:
a? + o + ol
2, = Gt tes) 5H (e, 9)

where [(z) = [;¥ e 't*"!dt (Re(z) > 0) is the Gamma function and notation used:
Ca - Q’Va/alv Ea - _(YQ/H’VaL + (_1)a710‘3/267a: a= ﬁ

( Parameter constraints N\
sgn(aq) =sgn(v.), a= 1,4,
ag < 0,-2|ag| < ag < 2|ag|, 74 >0, (10)
» Ya < 0.




! 0.'2 lll4 0.'6 0.'8 ; I.IZ C( 9)
3
5
/]
]
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0
Figure 1 — Free energy F(f) as a Figure 2 — Heat capacity C(f) as a
function of temperature 6, with a; = 1, function of temperature 0, with a; = 1,
()42:_27&3:_15‘%:1 CK2:—27043:—1,I§}:1
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Example 2: The two-dimensional harmonic oscillator

From equation (8) the partition

function of the system is obtained

Px = —X, py:_Yv X = Px, y:py; as:
1 1 472(a2 + a3 + a3)
H, = = 2 2 , H, = = 2 2 i — 1 2 i 3 03. 11
1= 5+, Ha=g(py +y7) S P T (11)
_J
Parameter constraints
a1 >0, a9 >0, a%—a1a2<0, (12)

where aig = w € [0, 1) represents the angular velocity.
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Figure 3 — Free energy F(f) as a Figure 4 — Heat capacity C(f) as a
function of temperature ¢, with a; =1, function of temperature 0, with a; = 1,
ar =1, w=001, k=1 as=1,w=001,k=1
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Algorithm for constructing statistical mechanics

)

Start with R*, coordinates x', dynamics X! = Vi(x), i = 1,4 and
integrals of motion Hy, Ho, Hs.
The highest tensor invariant is n = e, A 05 \ Ok N\ 0.

Using equation (3) construct the bivectors w23, combine them into Q,

det Q = 0. To remove degeneracy, introduce the modified bivector:
Qiot = Q+ Q. detQuor #0.

Convert the bivector into a two-form, satisfying QI My; = 5}
Using equations (4), (5) and (8) construct step by step the volume
element dI', the partition function Z, and the distribution function f,,.

For fixed parameters aq 93 compute the thermodynamic quantities F, S,
E and C.

J
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Conclusion

Key results:

~N

o We have developed an algorithm for constructing statistical mechanics of
multi-Hamiltonian systems with a four-dimensional phase space, based

on three specified integrals of motion.

e For the four-particle Toda lattice system and the two-dimensional
harmonic oscillator with coincident frequencies, we obtained the partition
function, the distribution function, and the main thermodynamic

quantities.

\ _/
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Conclusion

Future directions: N

e Extension of the present construction to higher-dimensional cases
(dimN =6, ...).

e Classification of the tensor invariants of the system constructed using the
Schouten bracket.

e Analysis of other higher-derivative dynamical systems, in which the well-
known problem of energy unboundedness from below arises
(M. Pavsic, A. Smilga,...).

\ J

The work has been done in collaboration with Dmitry S. Kaparulin (Tomsk State University).
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