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Problem & Tasks

Problem
We consider the statistical mechanics of multi-Hamiltonian dynamical system
in four-dimensional phase space.

We need to...
• ...establish an invariant measure on the phase space based on Poisson

geometry.

• ...derive explicit expressions for the partition function and the generalized
Gibbs distribution in the special coordinate system.

• ...extend these expressions to the case of an arbitrary coordinate system.
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Multi-Hamiltonian systems
Mechanical systems that admit several pairs of Hamiltonians together with their
associated Poisson brackets (H1 ,ω1) , (H2 ,ω2) , ... , which are not connected by a
coordinate transformation yet lead to the same equations of motion, are referred
to as multi-Hamiltonian systems (R.L. Fernandes, 1994).

dxi

dt
= ωjk

1
∂H1

∂xj
∂xi

∂xk︸ ︷︷ ︸
{H1, xi}ω1

= ωjk
2
∂H2

∂xj
∂xi

∂xk︸ ︷︷ ︸
{H2, xi}ω2

= ... (1)
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Nambu–Poisson mechanics (Y. Nambu, 1973; L. Takhtajan, 1993)

Consider a phase space N, dimN = n with local coordinates xi, together with a set
of functionally independent integrals of motion Hk (k = 1, n − 1).

In this setting, the dynamics of the system can be expressed within the
Nambu–Poisson formalism

dxi

dt
= {H1, ... ,Hn−1, xi} = εi1...in−1in ∂H1

∂xi1
...
∂Hn−1

∂xin−1

∂xi

∂xin
, i = 1, n , (2)

where {H1, ... ,Hn−1, xi} denotes the generalized Nambu bracket, ε is the
completely antisymmetric Levi-Civita tensor.
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The Nambu bracket, which generalizes the Poisson bracket, can in turn be
reformulated through the Schouten bracket:

Vi(x) = {H1, ... ,Hn−1, xi} =
(−1)

n(n−1)
2

n!
[[η,H1], ... ,Hn−1] , (3)

where Vi(x) are the components of the velocity field, and η = εi1...in∂i1 ∧ · · · ∧ ∂in is
the highest tensor invariant of the system in the sense that LVη = 0.

Schouten bracket

[ . , . ] :

Ωp ×

Ωq →

Ωp+q−1

where

Ωn is denotes the space of polyvectors of rank n.

This represents a particular case of a multi-Hamiltonian system.
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Generalized Gibbs distribution (J. W. Gibbs, 1902)

We consider the canonical ensemble of N weakly interacting copies of a multi-
Hamiltonian system. For such a system, the canonical Gibbs distribution takes the
form:

f =
1
z
e
−H

θ , z =

∫
e
−H

θ dΓ , z =
1
N !

(Z)N . (4)

Here f denotes the distribution function, Z the partition function per system, dΓ the
phase space volume element, H the Hamiltonian, and θ the temperature.

A key point is that H is an additive quantity, and in our case we use the
form: H = α1H1 + α2H2 + · · ·+ αn−1Hn−1, αk ∈ R, k = 1, n − 1.
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The volume element of a four-dimensional phase space can be expressed as the
contraction of a two-form Π ∈ Ω2 (V. Arnold, Ordinary Differential Equations):

dΓ = εijklΠijΠkldx1dx2dx3dx4 , ΩikΠkj = δi
j . (5)

Here Ω represents a linear combination of the Poisson bivectors ω1,2,3, constructed via
equation (3) using the antisymmetry of Schouten bracket. In this setup, however, the
bivector Ω is degenerate, which prevents the formulation of a statistical mechanics.

The problem!
The task is to identify a non-degenerate bivector for the multi-Hamiltonian
system with a four-dimensional phase space.

8 / 23



Special coordinate system

To address the degeneracy issue, we switch to a special choice of coordinates:

ẋ1 = 0 , ẋ2 = 0 , ẋ3 = 0 , ẋ4 = 1 ;
H1 = x1 , H2 = x2 , H3 = x3 .

The original bivector is then modified with the help of its dual bivector:

Ωtot = Ω+ κΩ̃ , Ω̃ij =
1
2
εijklΩkl . (6)

In this form Ωtot is non-degenerate (detΩtot ̸= 0), serves as a Poisson
bivector ([Ωtot,Ωtot] = 0), remains invariant (LVΩtot = 0), and preserves
the Hamiltonian equations of motion (ẋi = {H, xi}Ω). Here κ denotes a real
parameter.
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In the chosen coordinate system, the bivectors can be conveniently expressed in
matrix form:

Ω =
1

(α2
1 + α2

2 + α2
3)


0 0 0 −α1

0 0 0 −α2

0 0 0 −α3

α1 α2 α3 0

 ,

Ω̃ =
1

(α2
1 + α2

2 + α2
3)


0 −α3 α2 0
α3 0 −α1 0
−α2 α1 0 0

0 0 0 0

 .

It follows immediately that the modified bivector is non-degenerate:

detΩtot =
κ4

(α2
1 + α2

2 + α2
3)

2 ̸= 0
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Partition function in the special and arbitrary coordinate system

Using equation (5) together with (6) the volume element can be written as:

dΓ =
1√

detΩtot
dx1dx2dx3dx4 =

(α2
1 + α2

2 + α2
3)

κ2 dx1dx2dx3dx4 . (7)

Upon transition to an arbitrary coordinate system according to formula (4) the
partition function of the multi-Hamiltonian system takes the form:

Partition function of multi-Hamiltonian system

Zα =

∫ ∣∣∣∣∣∂(H1,H2,H3, x4)

∂(x1, x2, x3, x4)

(
dx4

dt

)−1
∣∣∣∣∣(α2

1 + α2
2 + α2

3)

κ2 e
−αiHi

θ dx1dx2dx3dx4

(8)
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Thermodynamics (L. Landau, E. Lifshitz, Statistical Physics, Part 1)

In this situation, the partition function and the corresponding distribution depend
on the parameters κ and α1,2,3. Once these parameters are fixed, a unique energy
representative is selected, and the partition function reduces to a function of temperature
alone, (Z = Z(θ)). This leads to a well-defined statistical mechanics.

Thermodynamic quantities
• F = −θ lnZ – free energy;

• S = −∂F
∂θ

– entropy;

• E = −θ2 ∂

∂θ

(
F
θ

)
– internal energy;

• C = θ
∂S
∂θ

– heat capacity.
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Example 1: Four-particle Toda lattice system
(Baleanu D., Makhkhaldiani N., 1999)

Equations of motion

ẋ1 = γ1(ex2 − ex4
) ,

ẋ2 = γ2(ex3 − ex1
) ,

ẋ3 = γ3(ex4 − ex2
) ,

ẋ4 = γ4(ex1 − ex3
) ;

Integrals of motion

H1 =
ex1

γ1
+

ex2

γ2
+

ex3

γ3
+

ex4

γ4
,

H2 =
x1

γ1
+

x2

γ2
+

x3

γ3
+

x4

γ4
,

H3 = −1
2

(
x1

γ1
− x2

γ2
+

x3

γ3
− x4

γ4

)
,

Here γa are real parameters, with a = 1, 4.
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Example 1: Four-particle Toda lattice system

From equation (8), the partition function of the system is given by:

Zα =
(α2

1 + α2
2 + α2

3)

κ2

4∏
a=1

1
γa

ζ
ξa
a Γ(ξa) , (9)

where Γ(z) =
∫∞
0 e−ttz−1dt (Re(z) > 0) is the Gamma function and notation used:

ζa = θγa/α1, ξa = −α2/θγa + (−1)a−1α3/2θγa, a = 1, 4.

Parameter constraints

sgn(α1) = sgn(γa) , a = 1, 4 ,

α2 < 0,−2|α2| < α3 < 2|α2|, γa > 0 ,

α2 > 0,−2|α2| < α3 < 2|α2|, γa < 0 .

(10)
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Figure 1 – Free energy F(θ) as a
function of temperature θ, with α1 = 1,
α2 = −2, α3 = −1, κ = 1

Figure 2 – Heat capacity C(θ) as a
function of temperature θ, with α1 = 1,
α2 = −2, α3 = −1, κ = 1
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Example 2: The two-dimensional harmonic oscillator

Equations and integrals of motion

ṗx = −x , ṗy = −y , ẋ = px , ẏ = py ;

H1 =
1
2
(p2

x + x2) , H2 =
1
2
(p2

y + y2) ,

H3 = xpx − ypy .

From equation (8) the partition
function of the system is obtained
as:

Zα =
4π2(α2

1 + α2
2 + α2

3)

κ2(α1α2 − α2
3)

3/2 θ3 . (11)

Parameter constraints

α1 > 0 , α2 > 0 , α2
3 − α1α2 < 0 , (12)

where α3 ≡ ω ∈ [0, 1) represents the angular velocity.
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Figure 3 – Free energy F(θ) as a
function of temperature θ, with α1 = 1,
α2 = 1, ω = 0.01, κ = 1

Figure 4 – Heat capacity C(θ) as a
function of temperature θ, with α1 = 1,
α2 = 1, ω = 0.01, κ = 1
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Algorithm for constructing statistical mechanics

1) Start with R4, coordinates xi, dynamics ẋi = Vi(x), i = 1, 4 and
integrals of motion H1,H2,H3.
The highest tensor invariant is η = εijkl∂i ∧ ∂j ∧ ∂k ∧ ∂l.

2) Using equation (3) construct the bivectors ω1,2,3, combine them into Ω,
detΩ = 0. To remove degeneracy, introduce the modified bivector:

Ωtot = Ω+ κΩ̃ , detΩtot ̸= 0 .

3) Convert the bivector into a two-form, satisfying Ωik
totΠkj = δi

j.

4) Using equations (4), (5) and (8) construct step by step the volume
element dΓ, the partition function Zα and the distribution function fα.

5*) For fixed parameters α1,2,3 compute the thermodynamic quantities F, S,
E and C.
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Conclusion

Key results:
• We have developed an algorithm for constructing statistical mechanics of

multi-Hamiltonian systems with a four-dimensional phase space, based
on three specified integrals of motion.

• For the four-particle Toda lattice system and the two-dimensional
harmonic oscillator with coincident frequencies, we obtained the partition
function, the distribution function, and the main thermodynamic
quantities.
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Conclusion

Future directions:
• Extension of the present construction to higher-dimensional cases

(dimN = 6, . . . ).

• Classification of the tensor invariants of the system constructed using the
Schouten bracket.

• Analysis of other higher-derivative dynamical systems, in which the well-
known problem of energy unboundedness from below arises
(M. Pavsic, A. Smilga,. . . ).

The work has been done in collaboration with Dmitry S. Kaparulin (Tomsk State University).
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Discover.

Discuss.

Deduce.
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