

Solar neutrino constraints on singly charged Higgs boson via $E\nu ES$

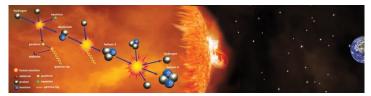
Based on accepted manuscript in Nucl. Phys. B and Partly supported by TÜBITAK Project No: 124F416

M F Mustamin^a, M Demirci*,^b

a mfmustamin@ktu.edu.tr. *,^b mehmetdemirci@ktu.edu.tr

The 22nd Lomonosov Conference on Elementary Particle Physics, Moscow, Russia

23 Aug 2025

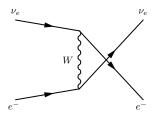

Outline

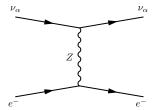
- 1 Introduction
- 2 Elastic Neutrino-Electron Scattering
- 3 Charged Higgs
- 4 Analysis Details
- 6 Results and Discussion
- **6** Summary

Introduction

Introduction

- Solar neutrinos rarely interact, intensively available, and well-directional messengers that have been one of the deriving sources of developments in neutrino physics for decades.
- Since the slow progress after the discovery of the SM Higgs at the energy frontier, shifting to other facility may provide alternative perspectives.
- Advancement of solar neutrino experiments and DD-DM facilities are being planned or under construction.

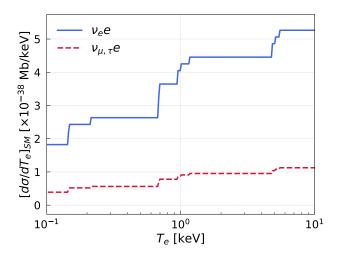



- Massive neutrinos is a strong moti- vation for searching BSM physics.
- We consider here the contribution of charged boson from the Higgs Triplet Model (HTM) (Cheng, Li, 1980).
- It provides an alternative way to introduce the smallness of neutrino masses through a mechanism called type-II see-saw.
- Previous studies have explored the model from various experiments: colliders, nuclear reactor, etc.
- Focusing on the singly charged Higgs, we consider the recent data from direct detection of dark matter experiments: PandaX-4T and XENONnT.

Elastic Neutrino-Electron Scattering $(E\nu ES)$

$E\nu ES$ Process

- It is is a pure leptonic process in the SM that provides one aspect of neutrino interaction with matter.
- The incoming neutrino can interact with the electron cloud in the target material in direct detection experiments.



The differential cross section can be written as

$$\left[\frac{d\sigma_{\nu_{\alpha}e}}{dT_{e}}\right]_{SM} = Z_{eff}(T_{e})\frac{G_{F}^{2}m_{e}}{2\pi}\left[(g_{V} + g_{A})^{2} + (g_{V} - g_{A})^{2}\left(1 - \frac{T_{e}}{E_{\nu}}\right)^{2} - (g_{V}^{2} - g_{A}^{2})\frac{m_{e}T_{e}}{E_{\nu}^{2}}\right],$$
(1)

$$g_V = -\frac{1}{2} + 2s_W^2 + \delta_{\alpha e}, \quad g_A = -\frac{1}{2} + \delta_{\alpha e},$$
 (2)

• The number of effective electron charges that can be ionized: $Z_{\rm eff}(T_{\rm e})$.

• The effective electron charge effects on the $E\nu ES$ cross-section for the case of xenon target.

Charged Higgs

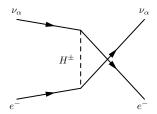
Brief review

• The HTM is based on the same symmetry group $SU(2)_L \times U(1)_Y$ as in the SM (Arhib *et al.*, 2011), with additional triplet field $\Delta \sim (1,3,1)$.

$$\Delta = \begin{pmatrix} \Delta^{+}/\sqrt{2} & \Delta^{++} \\ \Delta^{0} & -\Delta^{+}/\sqrt{2} \end{pmatrix}$$
 (3)

The gauge invariant Yukawa Lagrangian:

$$\mathcal{L}_{\text{Yukawa}} = -f_{ij}L_i^T Ci\sigma_2 \Delta L_j + \text{h.c.}, \tag{4}$$


 It contains all the Yukawa sectors of the SM plus one extra term that leads after spontaneous symmetry breaking to (Majorana) mass terms for the neutrinos, without requiring right-handed neutrino states. The Higgs triplet interaction term at tree-level:

$$\mathcal{L} = -f_{ij}\nu_{iL}^T C\Delta^0 \nu_{jL} + \sqrt{2}f_{ij}\nu_{iL}^T C\Delta^+_{jL} + f_{ij}I_{iL}^T C\Delta^{++}_{jL} + \text{h.c.}.$$
(5)

with
$$\nu^c(p) = C\bar{\nu}^T$$
 or $\bar{\nu}^c = \nu^T C$.

- In this work, the contribution of a singly charged boson from the HTM is investigated on neutrino-electron scatterings using solar neutrinos.
- We note that the model has been widely studied: mediator of DM (Greljo et al., 2013), e⁻e⁺ annihilation (Aali et al., 2022), multi-lepton anomalies at ATLAS (Ashanujjaman et al., 2024).

Contribution to $E\nu ES$

• The amplitude can be written as

$$-i\mathcal{M}_{\Delta} = \left[-if_{\alpha e}\sqrt{2}\bar{e}^{c}P_{L}\nu_{\alpha}\right]\left[\frac{-i}{q^{2}-m_{H^{\pm}}^{2}}\right]\left[-i\sqrt{2}f_{e\alpha}^{*}\bar{\nu}_{\alpha}^{c}P_{L}e\right],\tag{6}$$

• For massive $m_{H^{\pm}}$, and applying Fierz identity we obtain

$$\mathcal{M}_{\Delta} = \frac{f_{\alpha e}^2}{m_{H^{\pm}}^2} [\bar{e}\gamma^{\mu} P_L e] [\bar{\nu}_{\alpha} \gamma_{\mu} P_L \nu_{\alpha}], \tag{7}$$

- It is in analogy with the SM form.
- Therefore, the contribution of the charged Higgs can be obtained by substituting to the SM results:

$$g_{V_{\Delta}} = g_{V} - \frac{f_{\alpha}^{2}}{m_{H^{\pm}}^{2}} \frac{1}{2\sqrt{2}G_{F}}$$
 (8)

$$g_{A_{\Delta}} = g_A - \frac{f_{\alpha}^2}{m_{H^{\pm}}^2} \frac{1}{2\sqrt{2}G_F}$$
 (9)

• Using solar neutrinos, we can evaluate the coupling constant $f_{ee}, f_{eu}, f_{e\tau}$.

Analysis Details

Event Rate

The differential event rate:

$$\frac{dR}{dT_e} = \sum_{i=\rho\rho, {}^{7}\mathrm{Be}} \int_{E_{\nu}^{\min}}^{E_{\nu}^{\max}} dE_{\nu} \frac{d\Phi_{\nu_{\ell}}^{i}(E_{\nu})}{dE_{\nu}} \frac{d\sigma(E_{\nu}, T_e)}{dT_e}, \qquad (10)$$

The minimum energy:

$$E_{\nu}^{\min} = \frac{T_e}{2} \left(1 + \sqrt{1 + \frac{2m_e}{T_e}} \right).$$
 (11)

• Solar neutrinos arrive at the detector as a mixture of $\nu_{\rm e}$, ν_{μ} , and ν_{τ} :

$$\Phi_{\nu_{e}}^{i} = \Phi_{\nu_{e}}^{i\odot} P_{ee}, \qquad \Phi_{\nu_{\mu}}^{i} = \Phi_{\nu_{e}}^{i\odot} (1 - P_{ee}) \cos^{2} \vartheta_{23},
\Phi_{\nu_{\tau}}^{i} = \Phi_{\nu_{e}}^{i\odot} (1 - P_{ee}) \sin^{2} \vartheta_{23}.$$
(12)

• P_{ee} is the survival probability of ν_e (Maltoni and Smirnov, 2016)

$$P_{ee} = \frac{1}{2}c_{13}^2c_{13}^{m2}\left(1 + \cos 2\theta_{12}\cos 2\theta_{12}^m\right) + s_{13}^2s_{13}^{m2}, \quad (13)$$

• We consider the normal-ordering neutrino os- cillation parameter is taken from the latest $3-\nu$ oscillation of NuFit-5.3, without the Super-Kamiokande atmospheric data (Esteban *et al.*, 2020).

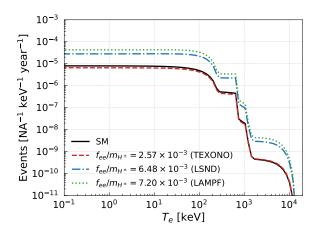
χ^2 -minimization

• We consider the following χ^2 -function

$$\chi^{2} = \min_{(\alpha_{i}, \beta_{i})} \left[\sum_{j=1}^{30} \left(\frac{R_{\text{obs}}^{j} - R_{\text{exp}}^{j}}{\sigma^{j}} \right)^{2} + \sum_{i} \left(\frac{\alpha_{i}}{\sigma_{\beta_{i}}} \right)^{2} + \sum_{i} \left(\frac{\beta_{i}}{\sigma_{\beta_{i}}} \right)^{2} \right]$$

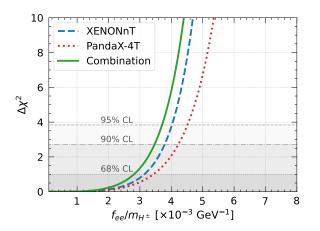
$$(14)$$

The number of expected events:

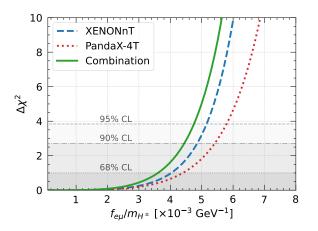

$$R_{\rm exp}^{j} = N_{T} \int_{T_{e}^{j}}^{T_{e}^{j+1}} dT_{e} \mathcal{A}(T_{e}) \int_{0}^{T_{e}''^{max}} dT_{e}' \, \mathcal{R}(T_{e}, T_{e}') \frac{dR}{dT_{e}}.$$
(15)

0000

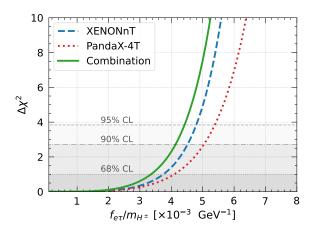
- The experimental data: XENONnT (Aprile et al., 2022) and PandaX-4T (Zhang et al., 2022).
- The nuisance parameters α and β account for the uncertainty on the neutrino flux and background normalization.
- The factor σ_{α} denotes the solar neutrino flux uncertainty and σ_{β} the background uncertainty.
- Solar neutrino flux from the B16-GS98 (Vinyoles et al., 2017) and Bahcall's energy spectrum (Bahcall et al., 2005) are taken into account.


Results and Discussion

Expected event rates


Expected contributions from previous values from TEXONO and LSND (Sevda et al., 2017), and from LAMPF (Perez et al., 1996).

$\Delta \chi^2$ profiles for $f_{\rm ee}/m_{H^\pm}$


• At 90 % C.L., PandaX-4T: $\lesssim 4.22 \times 10^{-3} \text{ GeV}^{-1}$, XENONnT: $\leq 3.79 \times 10^{-3} \text{ GeV}^{-1}$, Combination: $\leq 3.46 \times 10^{-3} \text{ GeV}^{-1}$.

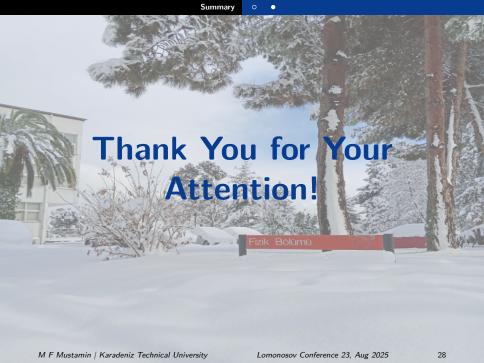
$\Delta \chi^2$ profiles for $f_{e\mu}/m_{H^\pm}$

• At 90 % C.L., PandaX-4T: $\lesssim 5.42 \times 10^{-3} \text{ GeV}^{-1}$, XENONnT: $\lesssim 4.86 \times 10^{-3} \text{ GeV}^{-1}$, Combination: $\lesssim 5.42 \times 10^{-3} \text{ GeV}^{-1}$.

$\Delta \chi^2$ profiles for $f_{e\tau}/m_{H^\pm}$

• At 90 % C.L., PandaX-4T: $\lesssim 5.04 \times 10^{-3} \text{ GeV}^{-1}$, XENONnT: $\lesssim 4.52 \times 10^{-3} \text{ GeV}^{-1}$, Combination: $\lesssim 4.13 \times 10^{-3} \text{ GeV}^{-1}$.

Collider constraints


- The LEP experiments exclude charged Higgs bosons lighter than approximately 80 GeV (PDG).
- From LHC searches of $H^{\pm} \to \ell^{\pm} \nu$ place stronger bound on $m_{H^{+}}$ in the range of 300 500 GeV.
- Assuming $m_{H^+} = 80$ GeV we have

$$f_{ee} < 0.297, f_{e\mu} < 0.380, f_{e\tau} < 0.354. (16)$$

Summary

Summary

- We have studied the singly charged Higgs boson of the HTM contribution to neutrino-electron interactions induced by solar neutrinos.
- The HTM is a simple extension of the SM that can explain the smallness of neutrino masses without requiring right-handed neutrinos.
- The singly charged Higgs is relevant for $E\nu ES$ process.
- We have derived limits on $f_{ee}/m_{H^+}, f_{e\mu}/m_{H^+}, f_{e\tau}/m_{H^+}$ using data from XENONnT and PandaX-4T.
- The currently developed DM-DD facilities could be used as a testing ground to search for the charged boson of the HTM and also other scenarios of BSM in general.

