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Background

Although neutrino has been proposed by Pauli in 19301and experimentally dis-
covered first by Cowan and Reines in 19562, our understanding of neutrinos
has never stopped evolving. We now know that neutrino can change from one
flavour to another after propagation in spacetime. The most promising reason
for this phenomenon is non-degenerate neutrino masses with the mismatch be-
tween flavour eigenstates and mass eigenstates. This immediately leads to a
natural question: Where do neutrino masses come from? At the present stage,
the most widely welcome class of mass generation mechanisms are the so-called
seesaw mechanisms, in which one or more types of unobserved heavy neutrinos
are introduced to the original Standard Model to account for the tiny but non-
degenerate masses of the observed neutrinos in a way similar to what a seesaw
looks like — one end up and one end down.

1W. Pauli, in Proceedings of the Gauverein Conference, Tübingen, Germany, 4 December 1930.
2C. L. Cowan Jr. et al., Science 124, 103–104 (1956).
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Background

A large number of models have been proposed for the generation of neutrino
masses. As remarked by Edward Witten in the 19th International Conference on
Neutrino Physics and Astrophysics (Neutrino 2000) in 20003:

For neutrino masses, the considerations have always been qualitative, and,
despite some interesting attempts, there has never been a convincing
quantitative model of the neutrino masses.

Witten’s opinion is still essentially true after 24 years.

To improve the quantitative predictability of models, one can introduce some
constraints, such as flavour symmetries, to reduce those degrees of freedom.

3E. Witten, Nucl. Phys. B Proc. Suppl. 91, 3–8 (2001).
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Canonical seesaw mechanism
In canonical seesaw mechanism4, three right-handed neutrino fields NαR with
α = e, µ, τ are appended to the Standard Model of particle physics. These new
neutrino fields are SU(2)L singlet. The corresponding neutrino mass term with
both gauge invariance and Lorentz invariance is as follows:

−Lν = lLYνH̃NR +
1
2 (NR)cMRNR + h.c..

◀ lL: SU(2)L doublet of left-handed lepton fields.
◀ Yν : 3 × 3 Yukawa coupling matrix.
◀ H̃: defined with Higgs doublet H and the second Pauli matrix σ2 as

H̃ := iσ2H∗.
◀ NR: column vector (NeR,NµR,NτR)

T.
◀ MR: 3 × 3 Majorana mass matrix.
◀ h.c.: “Hermitian conjugate”.
4E.g., P. Minkowski, Phys. Lett. B 67, 421 (1977). More in the references.
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Canonical seesaw mechanism

After spontaneous electroweak symmetry breaking, the part of Lagrangian density
responsible for neutrino masses is

−L′
ν =

1
2
(
νL (NR)c

)( 0 MD
MT

D MR

)(
(νL)

c

NR

)
+ h.c..

◀ νL: column vector (νeL, νµL, ντL)
T.

◀ MD: 3 × 3 Dirac mass matrix defined by Yν⟨H⟩.
◀ ⟨H⟩: vacuum expectation value of the Higgs field.
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Canonical seesaw mechanism

The whole 6×6 mass matrix can be diagonalised by the unitary matrix
(

U R
S Q

)
as follows: (

U R
S Q

)† ( 0 MD
MT

D MR

)(
U R
S Q

)∗

=

(
Dν 0
0 DN

)
.

◀ †: conjugate transpose.
◀ ∗: complex conjugate.
◀ Dν : diagonal matrix with eigenvalues m1,m2,m3.
◀ DN: diagonal matrix with eigenvalues M1,M2,M3.
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Canonical seesaw mechanism

◀ Unitarity conditions:

UU† + RR† = SS† + QQ† = I,
U†U + S†S = R†R + Q†Q = I,
US† + RQ† = U†R + S†Q = 0.

◀ Exact seesaw formula:

UDνUT + RDNRT = 0.
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Relevant works

In JHEP 06 (2022) 034 (presented in ICHEP2022)5, it is claimed that the ex-
perimentally favoured relation |Uµi| = |Uτ i| (for i = 1, 2, 3) necessarily implies
|Rµi| = |Rτ i| (for i = 1, 2, 3) in the context of canonical seesaw mechanism, from

which it is further claimed that in the scenario U = PU∗ with P =

1 0 0
0 0 1
0 1 0


the relation R = PR∗ is a necessary consequence and there is a corresponding
minimal flavour symmetry in the neutrino mass term under the transformation
νeL → (νeL)

c, νµL → (ντL)
c, ντL → (νµL)

c on the left-handed neutrino fields
and arbitrary unitary CP transformation on the right-handed neutrino fields.

5Z.-z. Xing, JHEP 06, 034 (2022)
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Previous results

After carefully re-examining the argument in JHEP 06 (2022) 034, we find that
the relation R = PR∗ is no more than one of many possibilities that can accom-
modate U = PU∗ in the context of canonical seesaw mechanism. Therefore,
the minimal symmetry mentioned earlier is a good guess but does not necessarily
exist in the scenario U = PU∗
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Previous results

By substituting U = PU∗ into the exact seesaw formula, we have

(PU∗)Dν(PU∗)T + RDNRT = 0.

By simultaneously left- and right-multiplying P on the above equation, and then
taking its complex conjugate, one obtains

UDνUT + (PR∗)DN(PR∗)T = 0.

Note that we have made use of the properties that Dν and DN are both diagonal
and real. Comparing the above equation with the previously mentioned exact
seesaw formula, one immediately obtain:

RDNRT = (PR∗)DN(PR∗)T.

It is claimed in the previous works that the above equation necessarily implies
R = PR∗. However, this is mathematically not correct, since RDNRT =
(PR∗)DN(PR∗)T, as a matrix equation, is not a sufficient condition for R =
PR∗.
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Previous results

We show that6, there exist at least 6 distinct nontrivial classes of 3× 3 matrices
F, such that for any of these choices the relation RDNRT = (RF)DN(RF)T is
always true. A more general condition to be satisfied is thus RF = PR∗.

6J. Lu, A. H. Chan and C. H. Oh, Universe 10(1), 50 (2024).
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Previous results

The first class of F has the texture

0 × 0
× 0 0
0 0 1

:

F1 =


0 +

√
M1√
M2

0

+

√
M2√
M1

0 0
0 0 1

 , F2 =


0 +

√
M1√
M2

0

−
√

M2√
M1

0 0
0 0 1

 ,

F3 =


0 −

√
M1√
M2

0

+

√
M2√
M1

0 0
0 0 1

 , F4 =


0 −

√
M1√
M2

0

−
√

M2√
M1

0 0
0 0 1

 .
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Previous results

The second class of F has the texture

0 0 ×
0 1 0
× 0 0

:

F5 =


0 0 +

√
M1√
M3

0 1 0
+

√
M3√
M1

0 0

 , F6 =


0 0 +

√
M1√
M3

0 1 0
−
√

M3√
M1

0 0

 ,

F7 =


0 0 −

√
M1√
M3

0 1 0
+

√
M3√
M1

0 0

 , F8 =


0 0 −

√
M1√
M3

0 1 0
−
√

M3√
M1

0 0

 .
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Previous results

The third class of F has the texture

1 0 0
0 0 ×
0 × 0

:

F9 =


1 0 0
0 0 +

√
M2√
M3

0 +

√
M3√
M2

0

 , F10 =


1 0 0
0 0 +

√
M2√
M3

0 −
√

M3√
M2

0

 ,

F11 =


1 0 0
0 0 −

√
M2√
M3

0 +

√
M3√
M2

0

 , F12 =


1 0 0
0 0 −

√
M2√
M3

0 −
√

M3√
M2

0

 .
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Previous results

The fourth class of F has the texture

× 0 ×
0 1 0
× 0 ×

: (λ ∈ R)

F13 =


√

M1−λ2M3√
M1

0 λ

0 1 0

−λM3
M1

0

√
M1−λ2M3√

M1

 , F14 =


√

M1−λ2M3√
M1

0 λ

0 1 0
λM3
M1

0 −

√
M1−λ2M3√

M1

 ,

F15 =


−

√
M1−λ2M3√

M1
0 λ

0 1 0
λM3
M1

0

√
M1−λ2M3√

M1

 , F16 =


−

√
M1−λ2M3√

M1
0 λ

0 1 0

−λM3
M1

0 −

√
M1−λ2M3√

M1

 .
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Previous results

The fifth class of F has the texture

× × 0
× × 0
0 0 1

: (α ∈ R)

F17 =


−

√
M1−α2M2√

M1
α 0

−αM2
M1

−

√
M1−α2M2√

M1
0

0 0 1

 , F18 =


−

√
M1−α2M2√

M1
α 0

αM2
M1

√
M1−α2M2√

M1
0

0 0 1

 ,

F19 =


√

M1−α2M2√
M1

α 0

−αM2
M1

√
M1−α2M2√

M1
0

0 0 1

 , F20 =


√

M1−α2M2√
M1

α 0

αM2
M1

−

√
M1−α2M2√

M1
0

0 0 1

 .
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Previous results

The sixth class of F has the texture

1 0 0
0 × ×
0 × ×

: (β ∈ R)

F21 =


1 0 0

0 −

√
M2−β2M3√

M2
β

0 − βM3
M2

−

√
M2−β2M3√

M2

 , F22 =


1 0 0

0 −

√
M2−β2M3√

M2
β

0 βM3
M2

√
M2−β2M3√

M2

 ,

F23 =


1 0 0

0

√
M2−β2M3√

M2
β

0 − βM3
M2

√
M2−β2M3√

M2

 , F24 =


1 0 0

0

√
M2−β2M3√

M2
β

0 βM3
M2

−

√
M2−β2M3√

M2

 .
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Previous results

Detailed analysis on all these possibilities shows that the R = PR∗ is generally
not a necessary implication of U = PU∗. And the minimal symmetry mentioned
earlier is not guaranteed even if U = PU∗ is experimentally supported. To reach
the genuine flavour symmetry (if it really exists), more constraints are needed.

More details and discussions can be found in our paper J. Lu, A. H. Chan and
C. H. Oh, Universe 10 (2024) 1, 50.
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Classifying F and Distinguishing Physical Classes

◀ Goal: classify all right-multiplications F with FDNFT = DN that leave
mν invariant.

◀ Show: different F-classes are physically distinct beyond oscillations using
flavor invariants.

◀ Key punchline: same mν ⇒ same heavy–light physics or leptogenesis.
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Why do we need class-sensitive diagnostics?

◀ Exact seesaw identity: mν = −RDNRT.

◀ For any F with FDNFT = DN: (RF)DN(RF)T = RDNRT ⇒ mν

unchanged.

◀ Consequence: oscillation observables alone cannot select a unique R.

◀ Question: How to prove different F-classes are physically inequivalent?
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Setup and notation

◀ Type-I seesaw with three NR: L ⊃ −ℓLmDNR − 1
2 NT

RCMRNR + h.c.

◀ Light mass matrix: mν = −mDM−1
R mT

D.

◀ Exact diagonalization (block form): UTMU = diag(Dν ,DN), with
heavy–light R.

◀ Define non-unitarity: η = 1
2 RR†.
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The invariance group that preserves mν

◀ Theorem:

G = {F ∈ GL(3,C) | FDNFT = DN} = D1/2
N O(3,C)D−1/2

N .

◀ Proof idea: set H = D−1/2
N FD1/2

N ⇒ HHT = I.

◀ The above six classes are concrete representatives in O(3,C).
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The six F-class representatives

◀ A: H = I (identity), B: H = diag(−1, 1, 1), C: H = P23 (swap 2 ↔ 3).

◀ D: H = R12(0.7 i), E: H = R23(0.5 + 0.3 i), F: H = R13(0.9).

◀ Realized in F = D1/2
N HD−1/2

N .

◀ All give identical mν , but different heavy–light textures.
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Low-energy invariants that are class-blind

◀ Under weak-basis transform (WBT): mν → WLmνWT
L .

◀ Define hν = mνm†
ν . Then Iν,1 = Tr hν , Iν,2 = Tr h2

ν , Iν,3 = det hν

are invariant under WBT and under F-redefinitions.

◀ Purpose: serve as consistency checks across classes.
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Non-unitarity diagnostics from η

◀ η = 1
2 RR†, transforms as η → WLηW†

L.

◀ Flavor invariants (class-sensitive):
Jη,1 = Tr η, Jη,2 = Tr η2, Jη,3 = det η.

◀ Key subtlety: det η = 2−3 det(Dν) det(D−1
N ) is independent of H

(constant across classes), but Tr η,Tr η2 vary with class.
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Alignment and CP-odd leptogenesis invariants

◀ Alignment (orientation) invariant:
Kalign = Tr

(
[η, hν ]

2
)
≤ 0, [A,B] = AB − BA. Measures misalignment

of η vs hν ; strongly class-dependent.

◀ CP-odd invariant (unflavored leptogenesis):
I(1)

CP ∝
∑

i<j(M
2
i − M2

j )MiMj Im
[
(m†

DmD)
2
ij

]
. WBT-invariant and

class-sensitive; sign and magnitude vary with class.
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Rigorous invariance under weak-basis transformations

◀ WBT: mD → WLmDW†
R, MR → W∗

RMRW†
R.

◀ mν → WLmνWT
L ⇒ Tr hk

ν , det hν invariant (similarity).

◀ R → WLRV†
N ⇒ η → WLηW†

L ⇒ Tr ηk, det η invariant.

◀ CP-odd trace built from m†
DmD and MR is invariant by cyclicity and

functional calculus.
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Benchmark inputs and class representatives

◀ Spectra: Dν = {m1,m2,m3} (NO), DN = diag(3, 5, 8)× 1011 GeV.

◀ PMNS matrix with θ23 = 45◦, δ = −π/2 (exact |Uµi| = |Uτ i|).

◀ Six H choices (A–F) ⇒ six F-classes.

◀ Compute {Iν,1, Iν,2, Iν,3} and class-sensitive set
{Tr η,Tr η2, det η,Kalign, I(1)

CP}.
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Class separation in invariant space

◀ Controls: Iν,1, Iν,2, Iν,3 identical for A–F (sanity check).

◀ Variation across classes:
Tr η, Tr η2: vary by O(1∼4).

Kalign: spans >30 orders of magnitude (orientation effect).

I(1)
CP: changes in magnitude and sign.

det η: constant across A–F (as predicted).
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Degeneracies enlarge G and suppress CP traces

◀ If Mi = Mj: G enlarges (more H directions survive).

◀ CP-odd unflavored invariant ∝ (M2
i − M2

j ) is suppressed/vanishes for that
pair.

◀ Practical upshot: need higher-order / flavored invariants to keep classes
distinguishable near degeneracy.
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What observables can separate classes?

◀ Oscillations alone cannot select an F-class (same mν).

◀ Discriminators:
Precision non-unitarity (η): pattern and magnitude.

Charged-lepton flavor violation (via m†
DmD).

Leptogenesis viability (size/sign of I(1)
CP).

◀ Treat (Tr η,Tr η2,Kalign, I(1)
CP) as a fingerprint of the class at fixed

(U,Dν,DN).
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Physical non-equivalence of F-classes (at fixed U,Dν,DN)

◀ mν is independent of H ∈ O(3,C) ⇒ class-blind controls match.

◀ Tr η, Tr η2, Kalign, I(1)
CP are WBT-invariant but class-dependent.

◀ det η = 2−3 det(Dν) det(D−1
N ) is class-independent.

◀ Therefore: distinct H ⇒ physically distinct seesaw completions.
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Thank you!
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