Semileptonic B-decays at Belle and Belle II

22nd Lomonosov Conference on Elementary Particle Physics

Nikolai Peters on behalf of the Belle II collaboration Higher School of Economics

npeters@hse.ru

Motivation

$$\left|V_{qb}\right| = \sqrt{\frac{\mathcal{B}\left(B \to X_{q}\ell\nu_{\ell}\right)}{\tau_{B}\left[\Gamma\left(B \to X_{q}\ell\nu_{\ell}\right)\right]}}$$

Precise measurements important to constrain **CKM Unitarity**

Direct information on V_{cb} and V_{ub} can be extracted from **semileptonic decay rate** exclusively or inclusively

Experimentally measured branching fraction Predicted partial rate sans CKM factors (with V_{qb} set to 1)

Tension between inclusive and exclusive V_{qb} measurements $2-3\sigma$

Motivation

- In the Standard Model (SM), the W-boson couples equally to τ, μ, e Lepton-Flavor Universality (LFU)
- Semileptonic B decays are sensitive to new physics beyond SM
- Ratio measurements provide stringent LFU tests: branching fractions, angular asymmetry

 Measurement of ratio leads to partial cancellation of theoretical and experimental uncertainties

$$R(X_{\tau/\ell}) = \frac{\mathcal{B}(B \to X \tau \nu)}{\mathcal{B}(B \to X \ell \nu)}; \ \ell = e, \mu$$

Tension of $R(D_{ au/\ell}^{(*)})$ with SM $\sim 3.1\sigma$

Kinematics at *B*-factories

Strategy for event tagging

Schematic Overview of Full Event Interpretation

Event topology in $\Upsilon(4S)$ frame

Test of lepton flavor universality with measurements of $R(D^+)$ and $R(D^{*+})$ using semileptonic B tagging at the Belle II experiment

$$R(D_{\tau/\ell}^{(*)+}) = \frac{\mathcal{B}(B \to D^{(*)+} \tau \nu)}{\mathcal{B}(B \to D^{(*)+} \ell \nu)}; \ \ell = e, \mu$$

$R(D^{(*)})$: reconstruction

- First $R\left(D^{(*)}\right)$ Belle II measurement with **semileptonic** \boldsymbol{B} tagging: $B_{\mathrm{tag}}^{0} \to D^{(*)}\ell\nu_{\ell}$
- Neutral mode $\Upsilon(4S) \to B^0 \bar{B}^0$ is studied
- Reconstruct $B_{\rm sig}^0$ candidates in $D^+\ell^-$ and $D^*\ell^-$ final states not associated with the $B_{\rm tag}$ candidate
- au decays identification from $au^- o \ell^- ar{
 u}_\ell
 u_ au$
- D mesons reconstructed in multiple hadronic decays on both sides: tag side 26 decay modes, signal – 13
- Require $\cos\theta_{BY}^{\rm tag} \in [-1.75, 1.1]$ and $\cos\theta_{BY}^{\rm sig} \in [-15, 1.1]$

Signal side

$$\cos heta_{BY} = rac{2E_{\mathsf{Beam}} \ E_Y - m_B^2 - m_Y^2}{2 \ |ec{p}_B| \ |ec{p}_Y|}, \ Y = D^{(*)} \ell$$

$R(D^{(*)})$: analysis strategy

Densities of four fit categories in $(z_{\rm diff}, z_{ au})$ plane

$R(D^{(*)})$: results

- Extract signal and normalisation yields using a **2D binned likelihood fit** of z_{τ} and $z_{\rm diff}$
- The fit is performed over 4 separate channels: ${\it D}^+e^-, {\it D}^+\mu^-, {\it D}^{*+}e^-, {\it D}^{*+}\mu^-$
- $10\ \text{fit parameters:}\ 2\ \text{for the signal,}\ 2\ \text{for the normalisation and}\ 6\ \text{for the}$

$$Rig(D_{ au/\ell}^{*+}ig) = 0.306 \pm 0.034_{
m stat} \pm 0.018_{
m syst} \ Rig(D_{ au/\ell}^{+}ig) = 0.418 \pm 0.074_{
m stat} \pm 0.051_{
m syst}$$

Tension between the LFU-sensitive quantities $R\left(D_{\tau/\ell}\right)-R\left(D_{\tau/\ell}^*\right)$ and SM predictions **increases to 3.8** σ

$$R(D_{e/\mu}^{*+}) = 1.08 \pm 0.04_{
m stat} \pm 0.02_{
m syst}$$

 $R(D_{e/\mu}^{+}) = 1.07 \pm 0.05_{
m stat} \pm 0.02_{
m syst}$

Consistent with the SM within $1.6\sigma-1.2\sigma$

Measurement of the ratio of partial branching fraction of inclusive $\bar{B} \to X_u \ell \bar{\nu}$ to $\bar{B} \to X_c \ell \bar{\nu}$ and the ratio of their spectra with hadronic tagging

$|V_{ub}|/|V_{cb}|$: reconstruction

Dataset and Tagging:

711 ${
m fb^{-1}}$ Belle data (772 imes 10^6 $B\bar{B}$ pairs) with improved Belle II hadronic tagging algorithm

- K^+ and K_S reconstruction for tagging $m{b}
 ightarrow m{c}$ decay
 - N(K)>0 signal depleted sample for $X_c\ell
 u$ decays
 - N(K) = 0 signal enhanced sample to extract signal yields
 - Inclusive D^* reconstruction for $m{b}
 ightarrow m{c}$ veto via **soft pion** and **high** M_{miss}^2

1D fit to E_ℓ in $\emph{\textbf{u}}$ -depleted sample to get $\emph{\textbf{N}}^{\emph{\textbf{X}}_c\ell\nu}$ 2D fit to $E_\ell \times \emph{\textbf{q}}^2$ in $\emph{\textbf{u}}$ -enhanced sample to get $\emph{\textbf{N}}^{\emph{\textbf{X}}_u\ell\nu}$

$|V_{ub}|/|V_{cb}|$: results

Unfolding $B \to X_u \ell \nu$ and $B \to X_c \ell \nu$ yields in ratio with corrected efficiencies

$$\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B} (B \to X_u \ell v) \, \Delta \Gamma (B \to X_c \ell v)}{\Delta \mathcal{B} (B \to X_c \ell v) \, \Delta \Gamma (B \to X_u \ell v)}}$$

Theory decay rates:

$$\Delta\Gamma^{\rm GGOU}\left(B \to X_u \ell \nu\right) = 58.5^{+2.7}_{-2.3} \, {\rm ps}^{-1}$$

$$\Delta\Gamma^{\rm BLNP}\left(B \to X_u \ell \nu\right) = 61.5^{+6.4}_{-5.1} \, {\rm ps}^{-1}$$

$$\Delta\Gamma^{\rm Kin}\left(B\to X_c\ell\nu\right)=29.7\pm1.2\,{\rm ps}^{-1}$$

Branching fraction for BLNP and GGOU:

$$\begin{split} \frac{|V_{ub}|}{|V_{cb}|} &= \left(9.81 \pm 0.42_{\text{stat.}} \pm 0.38_{\text{syst.}} \pm 0.51_{\Delta\Gamma(B \to X_u \ell v)} \pm 0.20_{\Delta\Gamma(B \to X_c \ell v)}\right) \times 10^{-2} \\ \frac{|V_{ub}|}{|V_{cb}|} &= \left(10.06 \pm 0.43_{\text{stat.}} \pm 0.39_{\text{syst.}} \pm 0.23_{\Delta\Gamma(B \to X_u \ell v)} \pm 0.20_{\Delta\Gamma(B \to X_c \ell v)}\right) \times 10^{-2} \end{split}$$

Measurement of inclusive $B \to X_u \ell \nu$ partial branching fractions and $|V_{ub}|$ at Belle II

V_{ub} : reconstruction

- Hadronic tagging + reconstructed e or μ
- Neutrino characterised as missing energy
- Hadronic system X characterised from rest-of-event

Background suppression

- Continuum suppression via a NN using Event Geometry variables
- $X_c\ell \nu$ suppression via a NN using the worse reconstruction of $B\to X_c\ell \nu$ decays and low momentum π properties to reject $B\to D^*\ell \nu$ decays + kaon veto

Analysis based on available kinematic constants: 3 main kinematical variables to suppress $X_c \ell v$:

- 1. $E_{\ell}(B)$ lepton energy (in B_{sig} rest-frame)
- 2. M_X mass of hadronic system
- 3. q^2 lepton neutrino system 4-momentum squared

Binned template fit with 3 components: $X_u\ell\nu$, $X_c\ell\nu$ – main background, others backgrounds – fake/secondary leptons + continuum

Simultaneous Fit with the control sample, to correct the shape of the $X_c\ell v$ background

V_{ub} : results

Phase Space	Fit Variables
$E_{\ell}^{B} > 1 \; GeV$	E_{ℓ}^{B} : q^{2}
$E_{\ell}^{B} > 1 \text{ GeV}$ $M_{X} < 1.7 \text{ GeV}$	E_ℓ^B : q^2
$E_{\ell}^{B} > 1 \text{ GeV}$ $M_{X} < 1.7 \text{ GeV}$ $q^{2} > 8 \text{ GeV}^{2}$	E_ℓ^B

3 different fits in the 3 different phase spaces to extract the signal strength

For broadest phase-space region with most reliable theoretical prediction:

$$\Delta \mathcal{B} (B \to X_u \ell \nu) = (1.54 \pm 0.08 \pm 0.12) \times 10^{-3}$$

The obtained value of $|V_{ub}|$ using a partial decay rate predicted by the GGOU framework is

$$|\textit{V}_\textit{ub}| = \left(4.01 \pm 0.11 \pm 0.16^{+0.09}_{-0.07}\right) \times 10^{-3}$$

Measurement is competitive with other measurements

Determination of $|V_{cb}|$ using $B \to D\ell\nu_\ell$ Decays at Belle II

arXiv.2506.15256 submitted to PRD

V_{ch} : reconstruction

- Candidate $B o D\ell\nu$ formed from $\ell(e,\mu)$ and $D (o K\pi, o K\pi\pi)$
- Reduce experimental uncertainties due to isospin symmetry and separate analysis of B^0 and B^+ decays
- Inclusive reconstruction of neutrino momentum

Analysis based on available kinematic constants:

$$\cos heta_{BY} = rac{2 E_{ ext{Beam}} \; E_Y - m_B^2 - m_Y^2}{2 \; |ec{p}_B| \; |ec{p}_Y|} \ w = rac{m_B^2 + m_D^2 - q^2}{2 m_B m_D}$$

Backgrounds: $B \to D^* \ell \nu$; continuum events $e^+ e^- \to q \bar{q}, \ (q=u,d,s,c)$

V_{cb} : results

Branching fractions of each mode measured with fit on $\cos\theta_{\mathrm{BY}}$ in bins of w

-
$$\mathcal{B}\left(B^0 \to D^- \ell^+ \nu_{\ell}\right) =$$

(2.06 ± 0.05(stat.) ± 0.10(sys.))%

-
$$\mathcal{B}\left(B^{+} \to \bar{D}^{0}\ell^{+}\nu_{\ell}\right) =$$

(2.31 ± 0.04(stat.) ± 0.09(sys.))%

Fit differential decay rates using Bourrely-Caprini-Lellouch (BCL) form factor parameterization: $|V_{cb}|_{BCL} =$

$$(39.2 \pm 0.4_{\text{stat.}} \pm 0.6_{\text{sys.}} \pm 0.5_{\text{th.}}) \times 10^{-3}$$

Most precise measurement with $B o D\ell \nu_\ell$ data

Conclusion

- Study of semileptonic decays is an important way to constraint and check SM parameters
- Many semileptonic B decay results from Belle (II)
 - $-R(D^{(*)})$ LFU tests consistent with SM
 - Long-standing $|V_{xb}|$ puzzle still remains
- Urge for futher analysis
- Belle II starts new data taking in November 2025

Additional slides

V_{cb} : charged mode reconstruction

