22 Lomonosov Conference on Elementary Particle Physics

August 21 - 27, 2025

Moscow State University

Charmed baryons at Belle and Belle II

Alena Mufazalova

Higher School of Economics

23/08/2025

Charmed baryons topics

- mass
- width
- quantum numbers

branching fractions

dynamics & probabilities 2

Introduction

In the past two decades, many new excited charmed baryon states have been discovered by BaBar, Belle, CLEO and LHCb. [Chin. J. Phys. 78 (2022) 324]

- Theoretical interest peaked ~ early 1990s
- But we still do not have a good phenomenological model
- Lifetimes of the heavy baryons are commonly analyzed within the framework of heavy quark expansion (HQE)
- Prediction by HQE :

$$\tau(\Xi^{+}_{C}) > \tau(\Lambda^{+}_{C}) > \tau(\Xi^{0}_{C}) > \tau(\Omega^{0}_{C})$$

is in agreement with experiments before 2018

Lifetime of charmed baryons

High influence of spectator quarks!

Lifetime hierarchy of charmed baryons, fs [PDG 2024]

Evolution of the charmed baryon lifetimes measured in units of 10^{-13} s. [Chin. J. Phys. 78 (2022) 324]

	$ au(\varXi_c^+)$	$\tau(\Lambda_c^+)$	$ au(\varXi_c^0)$	$ au(arOmega_c^0)$
PDG (2004–2018) [5]	4.42 ± 0.26	2.00 ± 0.06	$1.12^{+0.13}_{-0.10}$	0.69 ± 0.12
LHCb (2018) [6]			0.10	2.68 ± 0.26
LHCb (2019) [125]	4.57 ± 0.06	2.035 ± 0.022	1.545 ± 0.026	
PDG (2020) [31]	4.56 ± 0.05	2.024 ± 0.031	1.53 ± 0.06	2.68 ± 0.26
LHCb (2021) [126]			1.480 ± 0.032	2.765 ± 0.141
WA (2021)	4.56 ± 0.05	2.024 ± 0.031	1.520 ± 0.020	2.745 ± 0.124

Weak decays

B_c - charmed baryon; B - daughter baryon; M - daugther meson

Belle/Belle II detector

1999-2010 data collection, $\sim 1ab^{-1}$

Belle/Belle II is universal 4π magnetic spectrometer

asymmetrical beams

- upgraded version of Belle
- start in 2019

Overview of selected analysis

- Measurements of the branching fractions (BF) of $\Xi^+_c \to \Sigma^+ K^0_s$, $\Xi^0 \pi^+$, and $\Xi^0 K^+$
- Observations of the singly Cabibbo-suppressed (SCS) decays $\Xi^+_{\ C} \to p K^0_{\ S}, \Lambda \pi^+, \text{ and } \Sigma^0 \pi^+$
- Measurement of the BF of $\Lambda^+_c \to pK^0_s \pi^0$
- Measurements of the BF of $\Xi^0_{C} \to \Xi^0 \pi^0$, $\Xi^0 \eta$, and $\Xi^0 \eta'$ and asymmetry parameter of $\Xi^0_{C} \to \Xi^0 \pi^0$

Measurements of the BF of

$$\Xi^{+}_{C} \rightarrow \Sigma^{+}K^{0}_{S}, \Xi^{0}\pi^{+}, \text{ and } \Xi^{0}K^{+}_{S}$$
Belle, 980fb⁻¹ + Belle II, 428fb⁻¹

Belle, 980fb⁻¹ + Belle II, 428fb⁻¹

Measurements of the BF of $\Xi^{+}_{C} \rightarrow \Sigma^{+}K^{0}_{S}$, $\Xi^{0}\pi^{+}$, and Ξ^0K^+

stat. syst. $= 0.067 \pm 0.007 \pm 0.003$ $= 0.248 \pm 0.005 \pm 0.009$ $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ $= 0.017 \pm 0.003 \pm 0.001$.

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+)/\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = 0.068 \pm 0.010 \pm 0.004.$$

first measurement!

arXiv:2503.17643v1

BF of $\Xi^+_{c} \to \Sigma^+ K^0_{c}$ lower than the central values predicted by most theoretical papers

Observations of the SCS decays $\Xi^{+}_{C} \to pK^{0}_{S}$, $\Lambda \pi^{+}$, and $\Sigma^{0} \pi^{+}$

Belle, 980 fb⁻¹ + Belle II, 428 fb⁻¹ JHEP 03 (2025) 061

first measurements of SCS decays

 $M(\Sigma^0\pi^+)$ [GeV/c²]

 $M(\Sigma^0\pi^+)$ [GeV/c²]

Observations of the SCS decays $\Xi^{+}_{C} \rightarrow pK^{0}_{S}$, $\Lambda \pi^+$, and $\Sigma^0 \pi^+$

JHEP 03 (2025) 061

Comparisons of measured SCS deacy with with theoretical predictions

Theoretical predictions are in poor agreement with experimental values

	Belle	Belle II	combined
$\frac{\mathcal{B}(\Xi_c^+ \to pK_S^0)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	$(2.36 \pm 0.27 \pm 0.08)\%$	$(2.56 \pm 0.19 \pm 0.11)\%$	$(2.47\pm0.16\pm0.07)\%$
$\frac{\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	$(1.72 \pm 0.29 \pm 0.11)\%$	$(1.47 \pm 0.16 \pm 0.09)\%$	$(1.56 \pm 0.14 \pm 0.09)\%$
$\frac{\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	$(3.97 \pm 0.42 \pm 0.23)\%$	$(4.26 \pm 0.33 \pm 0.24)\%$	$(4.13 \pm 0.26 \pm 0.22)\%$

Zou et al. [12] Geng et al. [13] Geng et al. [14] Huang et al. [15] Zhong et al. (I) [16] Zhong et al. (II) [16] Xing et al. [17] Geng et al. [18] Liu [19] Zhong et al. (I) [20] Zhong et al. (II) [20] Zhao et al. [21] Hsiao et al. (I) [22] Hsiao et al. (II) [22]

Belle and Belle II combined measurement

Measurement of the BF of $\Lambda^+_{C} \to pK^0_{S}\pi^0$

Belle, 980fb⁻¹

arXiv:2503.04371v2 accepted by PRD

examining the isospin properties of the weak interaction

$$\frac{\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)} = 0.339 \pm 0.002 \pm 0.009,$$

Using PDG value of

$$\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+) = (6.24 \pm 0.28)\%$$

$$\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0) = (2.12 \pm 0.01 \pm 0.05 \pm 0.10)\%,$$

This measurement improves uncertainty of previous CLEO result

Measurements of the BF of $\Xi^0_C \rightarrow \Xi^0 \pi^0$, $\Xi^0 \eta$, and $\Xi^0 \eta'$ and asymmetry parameter of $\Xi^0_C \rightarrow$

 $\Xi^0 \pi^0$

Belle, 980fb⁻¹ + Belle II, 428fb⁻¹

JHEP 10 (2024) 045

Mode	Belle	Belle II	Combined
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.47 \pm 0.02 \pm 0.03$	$0.51 \pm 0.03 \pm 0.05$	$0.48 \pm 0.02 \pm 0.03$
$\mathcal{B}(\Xi_c^0\to\Xi^0\eta)/\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)$	$0.10 \pm 0.02 \pm 0.01$	$0.14 \pm 0.02 \pm 0.02$	$0.11 \pm 0.01 \pm 0.01$
$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta')/\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)$	$0.12 \pm 0.03 \pm 0.01$	$0.06 \pm 0.03 \pm 0.01$	$0.08 \pm 0.02 \pm 0.01$

Measurements of the BF of $\Xi^0_C \to \Xi^0 \pi^0$, $\Xi^0 \eta$, and $\Xi^0 \eta'$ and asymmetry parameter of $\Xi^0_C \to \Xi^0 \pi^0$

Asymmetry parameter of $\Xi^0_{\ C} \to \Xi^0 \pi^0$

$\cos \theta_{\Xi^0}$	(-1.0, -0.6)	(-0.6, -0.2)	(-0.2, 0.2)	(0.2, 0.6)	(0.6, 1.0)
Belle	$\frac{260\pm25}{1.40}$	$\frac{296\pm26}{1.29}$	$\frac{266\pm27}{1.14}$	$\frac{265\pm27}{0.99}$	$\frac{224\pm24}{0.71}$
Belle II	$\frac{176\pm18}{2.37}$	$\frac{167 \pm 18}{2.08}$	$\frac{194\pm20}{1.96}$	$\frac{151\pm17}{1.60}$	$\frac{176\pm17}{1.18}$

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0},$$

*angle between the $\mathbf{p}(\Lambda)$ and the direction opposite to the Ξ^0 momentum vector in the Ξ^0 frame

Conclusion

- Study of charmed baryon is an important way to understand the non-perturbative dynamics of quantum chromodynamics
- Lifetime (as branching fraction) plays a crucial role in weak decays research of the charmed baryons
- There are width dispersion between different theoretical prediction of branching fraction of charmed baryons
- We hope our experimental results will help to improve theoretical models
- Belle II starts new data taking in November 2025