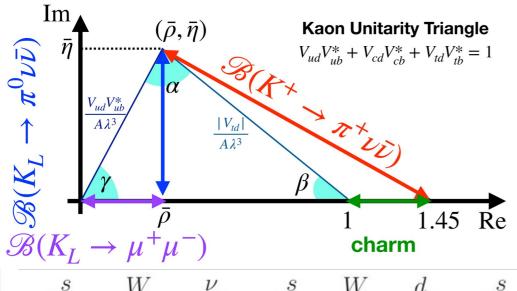
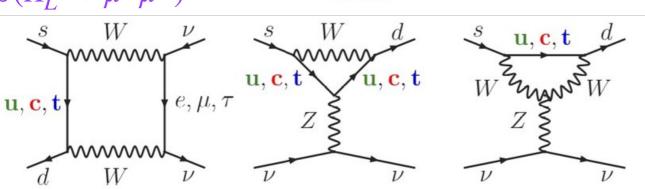
New measurement of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ branching ratio at the NA62 experiment

D.Madigozhin

Joint Institute for Nuclear Research, Dubna


for the **NA62** collaboration



Motivation

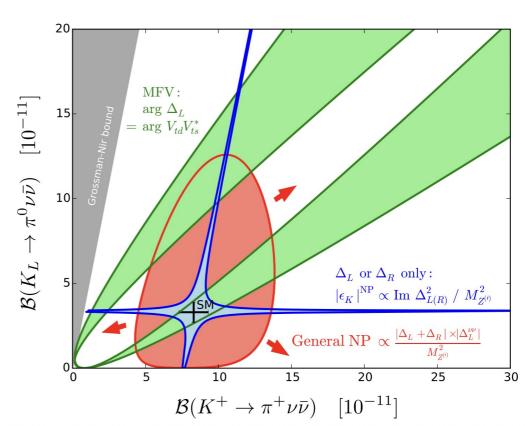
Probabilities of the "golden decays" $K^0\!\!\to\!\!\pi^0\!\!\vee\!\!\overline{\nu}$ and $K^+\!\!\to\!\!\pi^+\!\!\vee\!\!\overline{\nu}$ are directly related to CKM parameters.

- Pure s → d FCNC process with ~ sin⁵θ_c suppression
- Clean theory, mainly CKM uncertainty
- Hadronic form factors from K₁₃ measurements

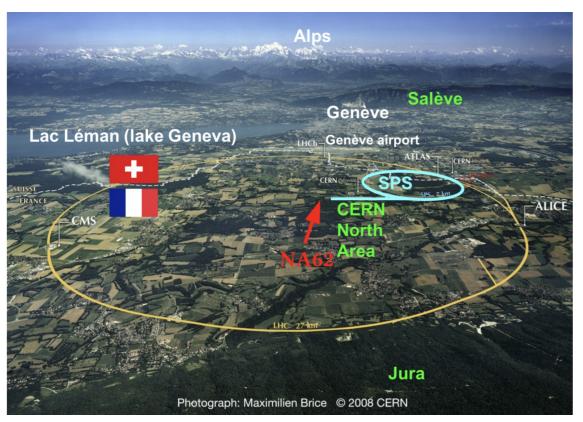
2

Mode BR	SM [Buras et al. EPJC 82 (2022) 7, 615]	SM [D'Ambrosio et al. JHEP 09 (2022) 148]	Experimental status prior to the new NA62 result		
$\mathbf{K}^{+} \rightarrow \pi^{+} \nu \overline{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	(10.6 ^{+4.1} _{-3.5})×10 ⁻¹¹ NA62		
$\mathbf{K}^0 \rightarrow \pi^0 \nu \overline{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	data 2016-18 [JHEP 06 (2021) 093] < 2.2×10 ⁻⁹ KOTO data 2021 [PRL 134 (2025) 081802]		

Beyond the SM


- Correlations between BSM contributions to BRs of $K^0 \to \pi^0 \nu \overline{\nu}$ and $K^+ \to \pi^+ \nu \overline{\nu}$ modes [JHEP 11 (2015) 166]. Must measure both to discriminate between BSM scenarios.
- Correlations with other observables (ε '/ ε , ΔM_K , B-decays) [JHEP 12 (2020) 097] [PLB 809 (2020) 135769].
- Leptoquarks [<u>EPJ.C 82 (2022) 4, 320</u>], Interplay between CC and FCNC [<u>JHEP 07 (2023) 029</u>], NP in neutrino sector [<u>EPJ.C 84 (2024) 7, 680</u>] and additional scalar/tensor contributions [<u>JHEP 12 (2020) 186</u>][<u>arXiv:2405.06742</u>] ...

Green: CKM-like flavour structure Models with Minimal Flavour Violation

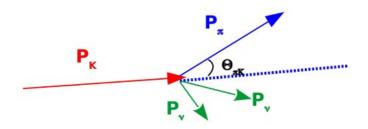

Blue: new flavour-violating interactions where LH or RH currents dominate Models with pure LH/RH couplings

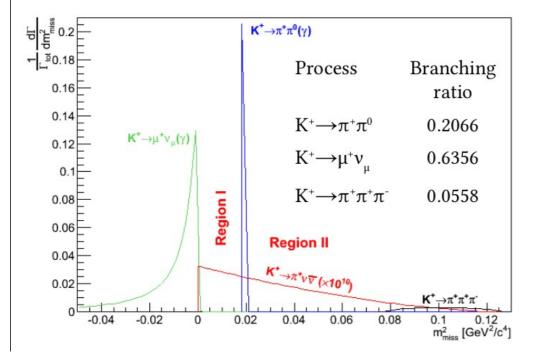
Red: general NP models without above constraints

Grossman-Nir Bound: model-independent relation

The NA62 experiment at CERN

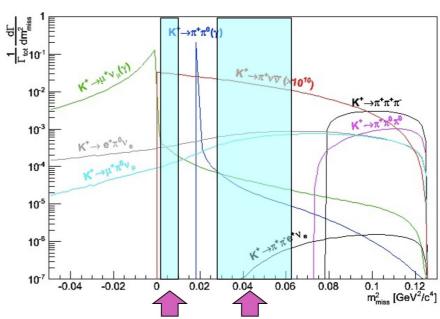
- About 200 physicists
- 30 institutions

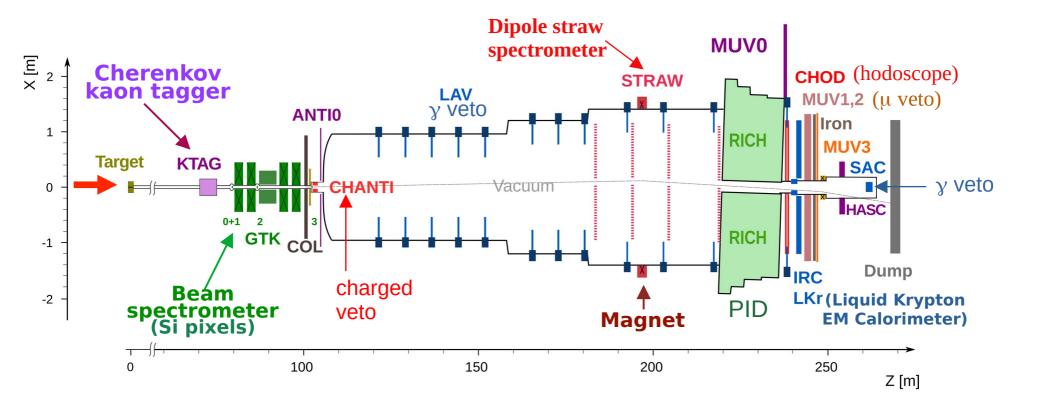

- Primary goal: measurement of
- **New Technique:** decay-in-flight
- Results: [PLB 791 (2019) 156]


[JHEP 11 (2020) 042] [JHEP 06 (2021) 093]

- Broader physics program:
 - Rare decays
 (e.g. [PLB 850 (2024) 138513])
 - LNV/LFV decays
 (e.g. [PLB 830 (2022) 137172])
 - Exotics (e.g. Dark photon PRL 133 (2024) 11, 1118021)
- Data taking
 - 2016 Commissioning + Physics run (45 days).
 - 2017 Physics run (160 days).
 - 2018 Physics run (217 days).
- This talk: 2021 Physics run (85 days).
 - 2022 Physics run (215 days).
 - 2023 Physics run (150 days).
 - 2024 Physics run (204 days)
 - 2025 Physics run ongoing ...

NA62 $\pi v \overline{v}$ strategy


Decay in flight $m_{miss}^2 = (P_K - P_{\pi} +)^2$ technique



■ Keystones of the analysis:

- ★ Timing between sub-detectors ~ O(100 ps)
- ★ Kinematic suppression ~ O(104)
- ★ Muon suppression > 10⁷
- ★ π^0 suppression (from K+ $\rightarrow \pi^+\pi^0$) > 107

NA62 beam and detector (final configuration 2021)

SPS proton beam

- 400 GeV/c
- ~2×10¹² PoT/spill
- 4.8 sec spill

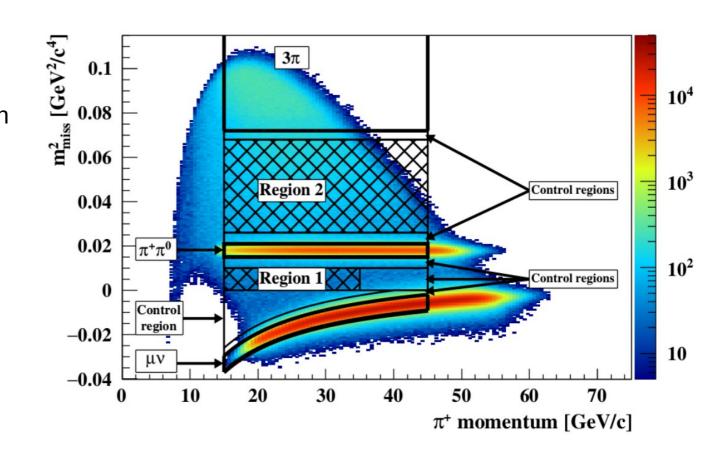
Beam from the Target

- 75 GeV/c, 1% bite
- 60×30 mm² at GTK, converging downstream
- K⁺(6%) π⁺(70%) p(24%)

Decay region

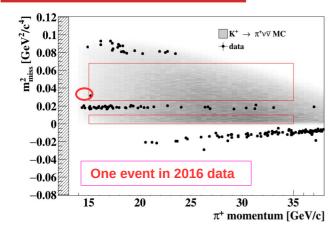
- ~ 60 m fiducial region
- ~ 2 MHz K⁺ decays
- Vacuum ~ O(10⁻⁶) mbar

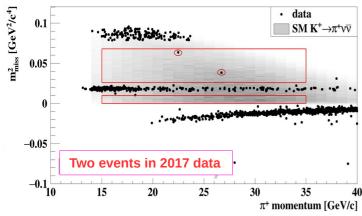
NA62 πνν analysis

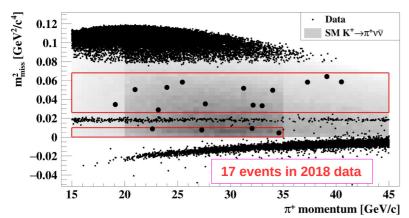

Blind analysis strategy to avoid the influence of selection criteria variation:

- Signal region is predefined and closed.
- Selection is developed looking on the background regions and control regions.
- Signal region is opened, events are counted, selection is frozen.

Signal selection:


- K^{\dagger} and π^{\dagger} tracks reconstruction
- K^{+} π^{+} matching
- Decay vertex reconstruction
- μ^{\dagger} rejection (π^{\dagger} identification)
- Photons rejection
- Multi-track rejection
- Kinematics plot


$$m_{miss}^2 = (P_K - P_{\pi})^2$$



NA62 results (data 2016-2018)

Results

Data	Reference	N_{bg} estimated	$N_{\pi u \overline{ u}}$ SM expected	N observed
2016	PLB 791 (2019) 156	0.152	0.267	1
2017	JHEP 11 (2020) 042	1.46	2.16	2
2018	JHEP 06 (2021) 093	5.42	7.58	17
2016-18	JHEP 06 (2021) 093	7.03	10.01	20

Statistical combination 2016-2018:

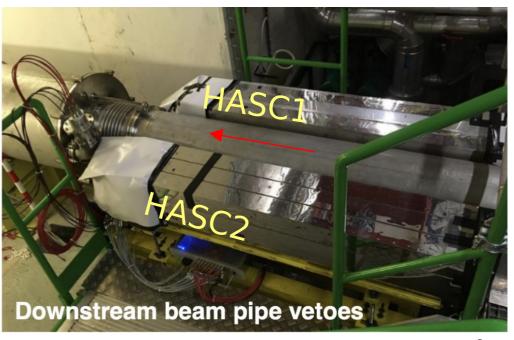
BR(K⁺
$$\rightarrow \pi^+ \nu \nu$$
) = (10.6^{+4.0}_{-3.4} ± 0.9_{syst}) ×10⁻¹¹

- Background-only hypothesis: $p = 3.4 \times 10^{-4}$
- Significance of 3.4 $\boldsymbol{\sigma}$

Data 2021-2022

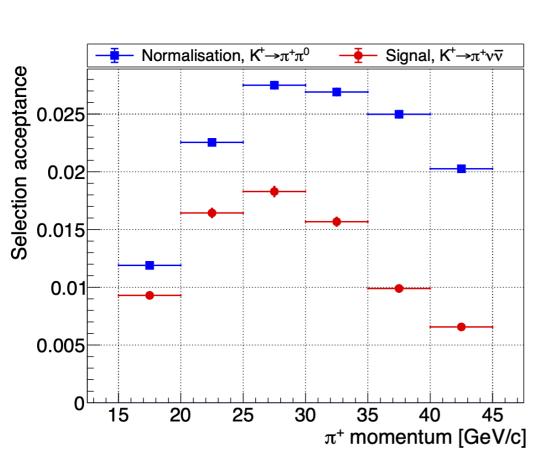
Upgrades during LS2 (2019-2020):

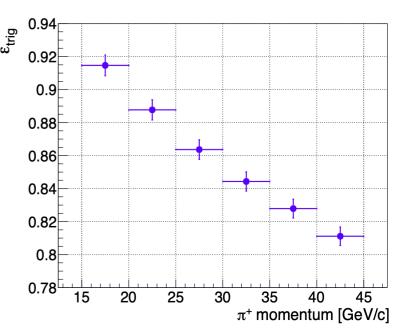
- New veto detectors upstream the fiducial volume;
- Fourth station added to beam spectrometer;
- Additional veto detector (HASC2) at the end of the beam line.

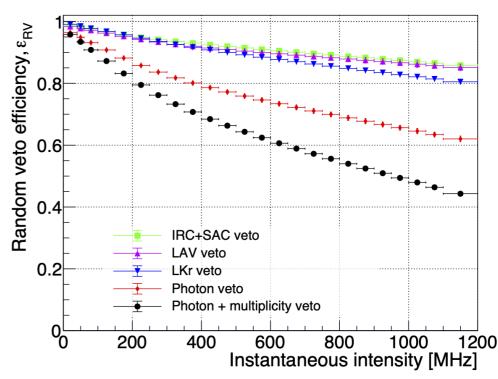

- Proton intensity +40% wrt to 16-18 data;
- 550000 spills
- Improved trigger

Selection procedure update, including the new **Bayesian classifier** for $(K^+ - \pi^+)$ matching using CDA, ΔT , N_{GTK} (intensity).

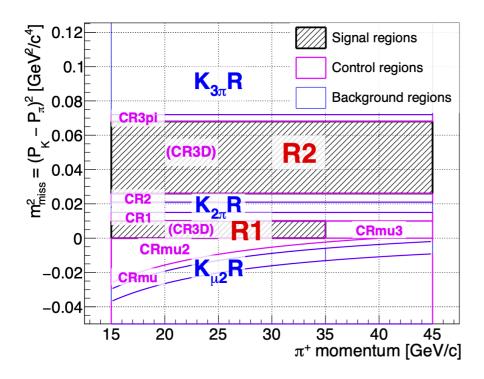
← Beam

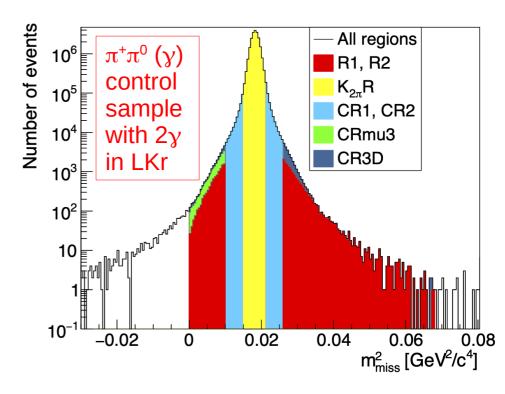


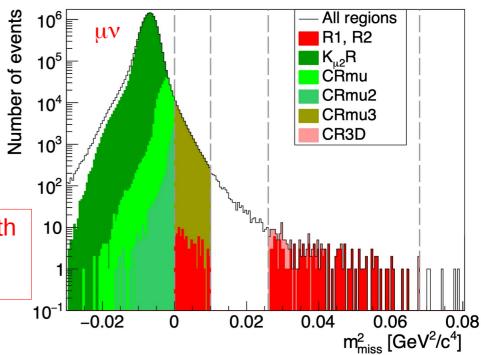

2021-2022 expected signal


 $N_{\pi\pi}$: normalization number of $K^+ \to \pi^+ \pi^0$ decays collected with a downscaled (D) control trigger line.

Expected number of πvv events in some region j:

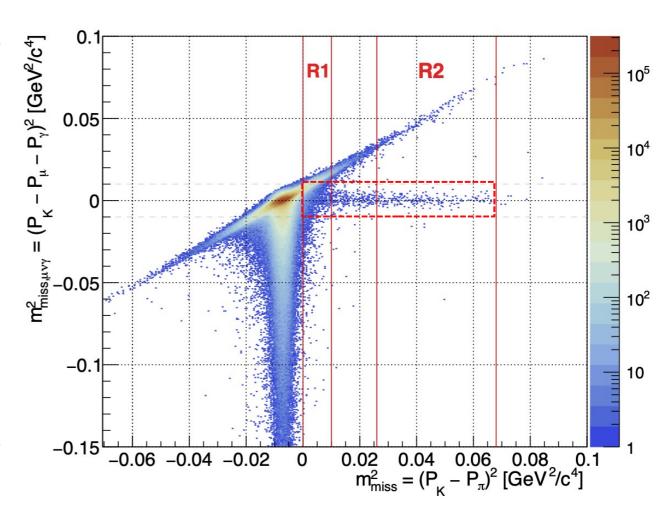

$$N_{\pi\nu\nu}^{SM,exp} = \frac{BR(\pi\nu\nu)_{SM}}{SES} = \frac{BR(\pi\nu\nu)_{SM}}{BR(\pi\pi)} \frac{A_{\pi\nu\nu}^{j}}{A_{\pi\pi}} N_{\pi\pi} D \, \varepsilon_{trig}^{j} \, \varepsilon_{RV}^{j}$$




Background from kinematic tails

 $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ control sample using MC to measure f_{tail}

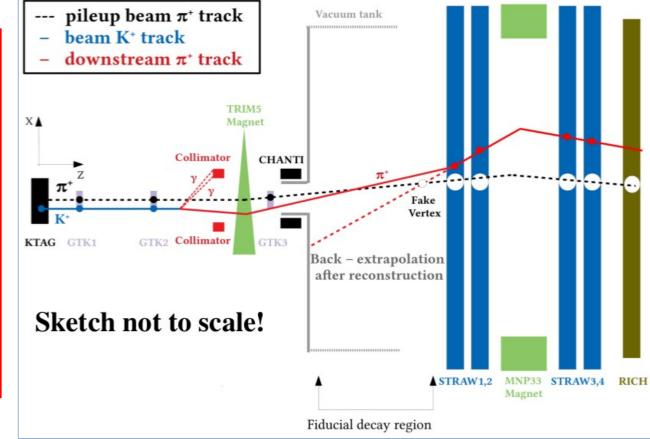
 $\mu\nu$ control sample with RICH PID = π^+ , but Calorimeter PID = μ^+



8/6/25

K⁺→µ⁺vy background

- Excess of signal candidates at P>35 GeV/c in Region 2 relative to the 2016-2018 data.
- Additional $K^+ \rightarrow \mu^+ \nu \gamma$ bg:
 - high-momentum μ overlap with γ in LKr leading to misID.
 - Increased due to PID worsening at higher intensity in 2021-2022.
- Selection criteria are modified, now we reject the candidate, if
 - $|m^2_{miss,\mu\nu\gamma}| < 0.01 \text{ GeV}^2/c^4$
 - $E_{LKr} > 5 \text{ GeV}$;
 - Not satisfying strict RICH PID.



12

For this background the expectation is evaluated using a control sample with Minimum Bias trigger, without calorimetric PID and with MUV3 signal.

Upstream background

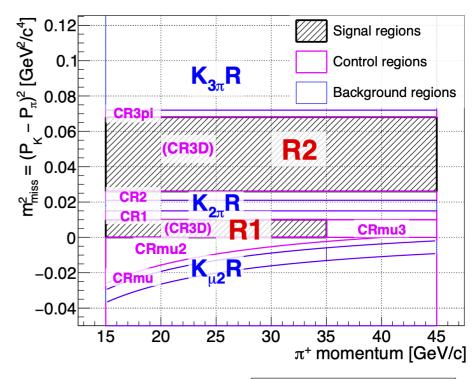
- A kaon decays upstream the fiducial decay region;
- Only produced π^+ enters the fiducial region;
- An in-time pileup beam particle is registered;
- The π^+ from upstream decay is scattered in Spectrometer, and a fake vertex is found in the fiducial region.

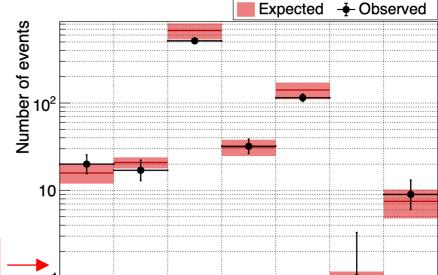
13

$$N_{bg}^{upstream} = f_{CDA} \Sigma_i N_i P_i$$

Where *i* is a bin in $(\Delta T, N_{GTK})$ plane;

 N_i is the upstream data sample (inverted CDA cut), **51** events in total;


 $f_{CDA} = 0.20 \pm 0.03$ extrapolation from the upstream sample distribution;


 P_i is $(K^+ - \pi^+)$ mismatching probability (from $\pi^0 \pi^+$ control sample).

Expectations and validation

Expected in full signal region:

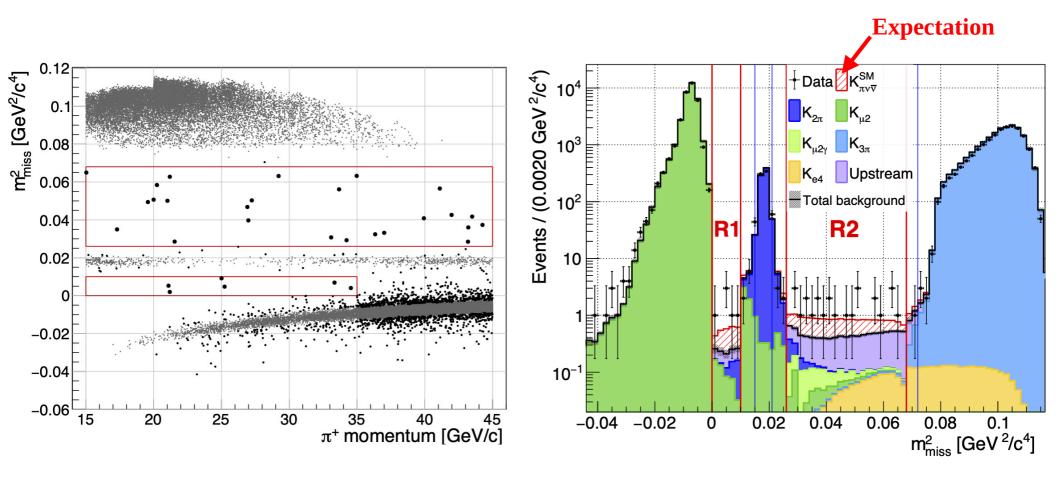
Background	Events	
$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05	
$K^+ \to \mu^+ \nu(\gamma)$	1.70 ± 0.47	Data-driven
$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03	
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.89^{+0.33}_{-0.27}$	
$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01	Simulation
$K^+ \to \pi^0 \ell^+ \nu$	< 0.001	
Upstream	$7.4^{+2.1}_{-1.8}$	Data-driven
Total	$11.0^{+2.1}_{-1.9}$	

CRmu CRmu2 CRmu3

CR3pi CR3D

Control Region

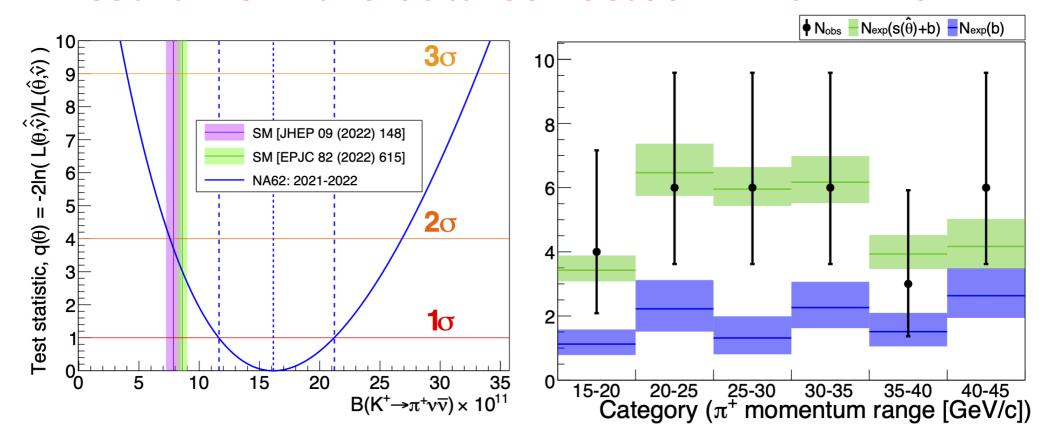
CR1


CR2

Expected SM $\kappa^+ \rightarrow \pi^+ \nu \overline{\nu}$ signal: 9.91±0.34

8/6/25

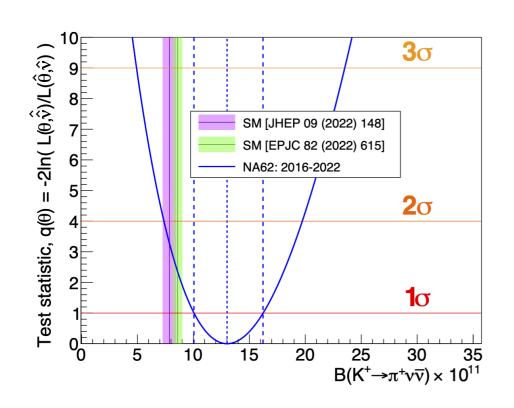
First open the control regions:


Signal regions: 2021-22 data

Observed: 31 events

8/6/25

Result from the data collected in 2021-2022

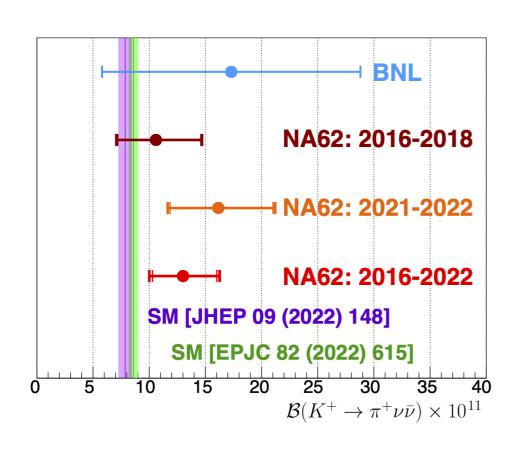

$$N_{bkg} = 11.0^{+2.1}_{-1.9}$$
, $N_{obs} = 31$, significance 3.6 σ

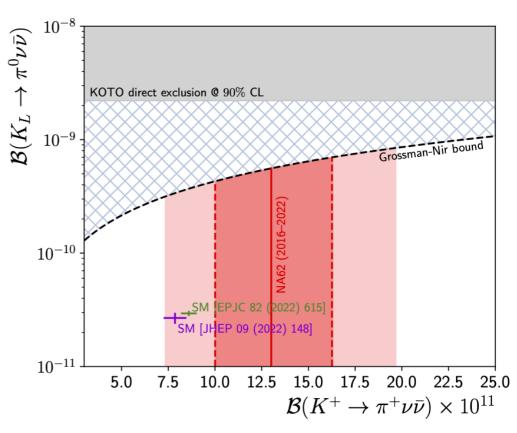

$$\mathsf{BR}_{2021\text{-}22}(\mathsf{K}^+ \to \pi^+ \nu \overline{\nu}) = (16.2^{+4.9}_{-4.3}|_{\mathsf{stat}}|_{-1.4}^{+1.4}|_{\mathsf{syst}}) \times 10^{-11} = (16.2^{+5.1}_{-4.5}) \times 10^{-11}$$

JHEP 02 (2025) 191

8/6/25

Combined result 2016-2022

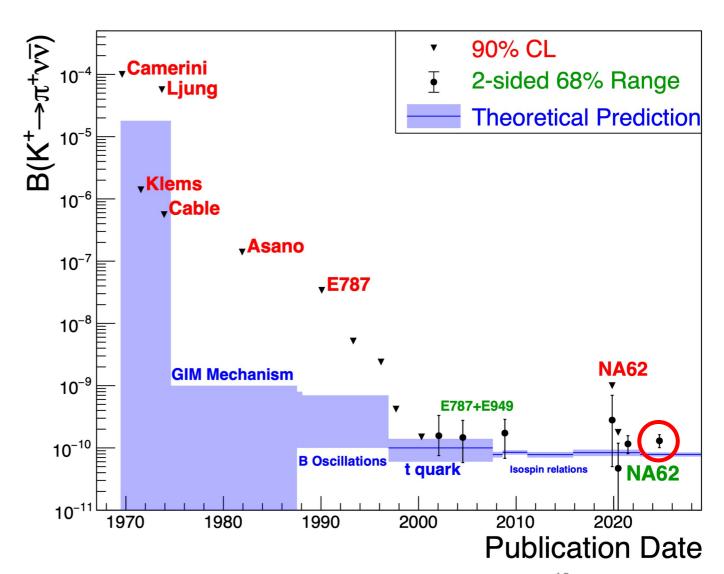

Integrating 2016-2022 data: $N_{bkg} = 18^{+3}_{-2}$, $N_{obs} = 51$


Background-only hypothesis p-value = 2×10^{-7} : significance Z > 5

$$\mathsf{BR}_{2016\text{-}22}(\mathsf{K}^+ \to \pi^+ \nu \overline{\nu}) = (13.0^{+3.0}_{-2.7}|_{\mathsf{stat}} + 1.3_{\mathsf{syst}}) \times 10^{-11} = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$$

JHEP 02 (2025) 191

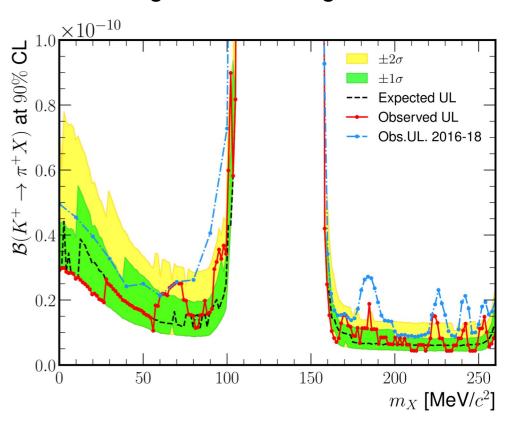
Results in context



- NA62 results are consistent
- Central value moved up (now 1.5—1.7 above SM)

8/6/25


Results in context


- Experimental measurements:
 - Camerini et al. [PRL 23 (1969) 326-329]
 - Klems et al. [PRD 4 (1971) 66-80]
 - Ljung et al. [PRD 8 (1973) 1307-1330]
 - Cable et al. [PRD 8 (1973) 3807-3812]
 - Asano et al. [PLB 107 (1981) 159]
 - E787 :
 - [PRL 64 (1990) 21-24]
 - [PRL 70 (1993) 2521-2524]
 - [PRL 76 (1996) 1421-1424]
 - [PRL 79 (1997) 2204-2207]
 - [PRL 84 (2000) 3768-3770]
 - [PRL 88 (2002) 041803]
 - E949 (+E787)
 - [PRL 93 (2004) 031801]
 - [PRL 101 (2008) 191802]
 - NA62:
 - 2016 data: [PLB 791 (2019) 156]
 - 2016+17 data: [JHEP 11 (2020) 042]
 - 2016—18 data: [<u>JHEP 06 (2021) 093</u>]
 - 2016—22 data: [JHEP 02 (2025) 191]
- Theory:
 - [Phys.Rev. 163 (1967) 1430-1440]
 - [PRD 10 (1974) 897]
 - [Prog.Theor.Phys. 65 (1981)]
 - [PLB 133 (1983) 443-448]
 - [PLB 192 (1987) 201-206]
 - [Nucl.Phys.B 304 (1988) 205-235]
 - [PRD 54 (1996) 6782-6789]
 - [PRD 76 (2007) 034017]
 - [PRD 78 (2008) 034006]
 - [PRB/8/3/\$2011) 034030]
 - [JHEP 11 (2015) 033]
 [IHEP 09 (2022) 148]

$K^+ \rightarrow \pi^+ X$, X is invisible

- Interpretation of the $K^+ \rightarrow \pi^+ \nu \nu$ result (2016-2022) [arXiv:2507.17286];
- Peak search in m_{miss}² distribution;
- $K^+ \rightarrow \pi^+ \nu \nu$ is the main background estimated using SM branching ratio.

Combined spectrum 2016-2022

Model-independent **constraints** are improved wrt **2016-2018** limits

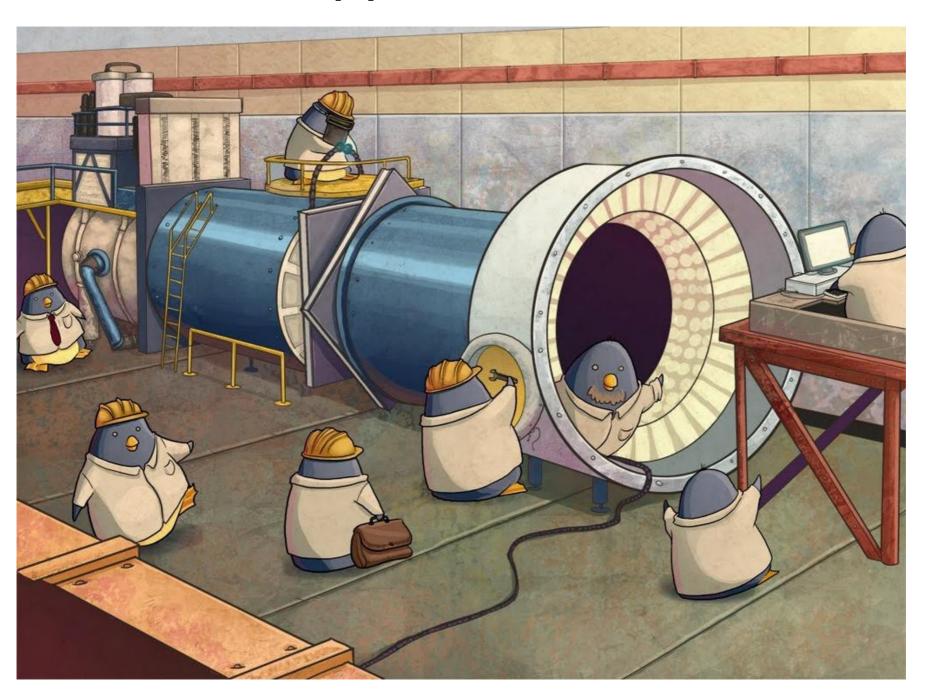
8/6/25

2023-2024 data: analysis in progress

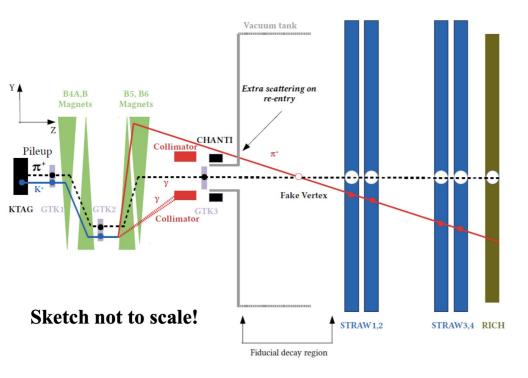
- 2024 data-taking conditions lead to a slightly higher signal yield per spill:
 - lower random veto loss compensates the lower kaon beam intensity.
- Increase of the overall expected signal yield, given the smoother and more efficient data collection.

WORK IN PROGRESS [2025 NA62 SPSC Report]

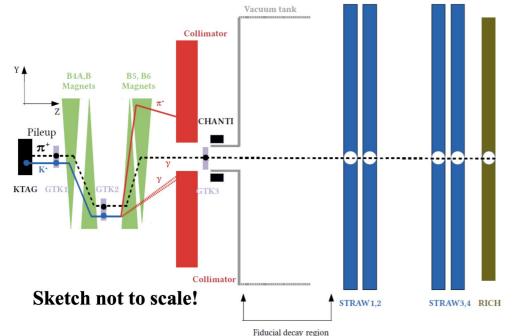
Dataset	2022	2023	2024
Number of spills [10 ³]	326	363	519
< Beam intensity > [GHz]	0.57	0.48	0.41
$< N_{\pi\pi}/\text{spill} > [10^2]$	4.9	4.7	4.4
$N_K [10^{12}]$	2.3	2.5	3.3
$arepsilon_{ m RV}$	0.63	0.68	0.73
$N_{\pi u u}$	8	9	13
$N_{\pi\nu\nu}/{\rm spill} \ [10^{-5}]$	2.5	2.5	2.6
$B_{\rm total}/N_{\pi u u}$	1.1	1.1	1.0

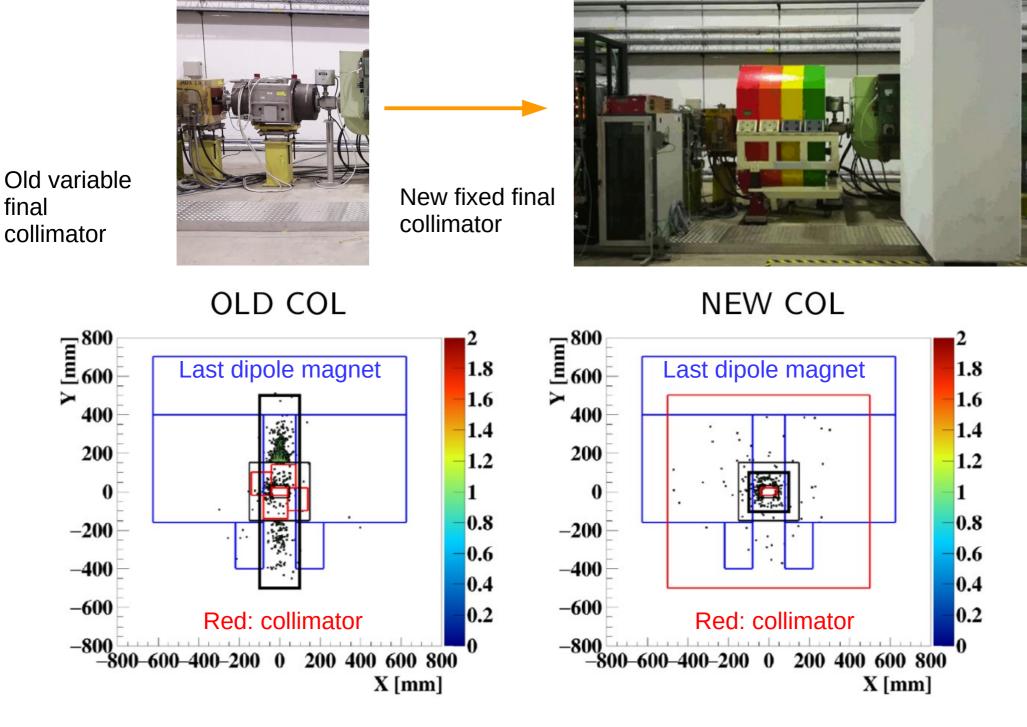

Btotal: background events

The addition of the 2023-2024 dataset is expected at least to double the signal yield of the 2016-2022 dataset, with the same relative level of background.


Conclusions

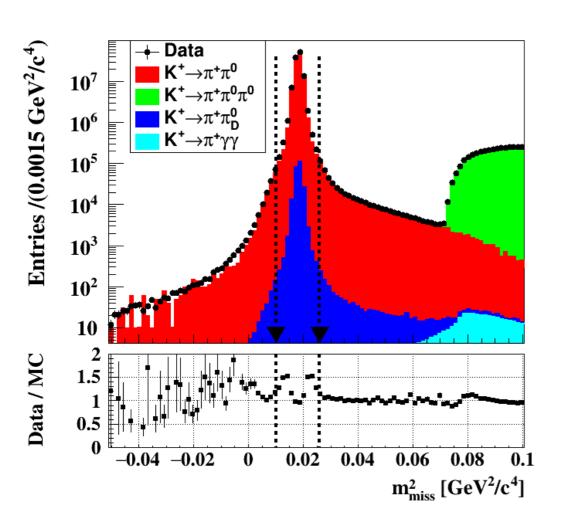
- New NA62 study of $K^+ \to \pi^+ \nu \bar{\nu}$ using 2021-2022 data: [JHEP 02 (2025) 191]
 - $N_{bg} = 11^{+2.1}_{-1.9}$, $N_{obs} = 31$;
 - BR₂₀₂₁₋₂₂ (K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) = (16.2^{+4.9}_{-4.3} |_{stat} ^{+1.4}_{-1.4} |_{syst})×10⁻¹¹
- Combining with the 2016-2018 result:
 - $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$;
 - BR₂₀₁₆₋₂₂ (K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)= (13.0^{+3.0}_{-2.7} |_{stat} +1.3 |_{syst})×10⁻¹¹
 - Background-only hypothesis excluded with significance of 5σ : the first statistically significant observation.
- It is the smallest BR ever observed at 5σ level.
- In agreement with SM within 1.7 σ . Need full data set to confirm.
- Improved upper limits for $K^+ \rightarrow \pi^+ X$, X is invisible.
- 2023-2024 data analysis in progress, NA62 will take data until 2026.


Supplemental


Replacement of the final collimator against upstream events in June 2018

- The last dipole of the beam line changes direction of π from upstream decays (interactions) happened in the beam line.
- The pion pass the existing shielding.
- Accidentally this pion crosses some kaon path and forms a vertex in decay volume.

- A new final collimator from the second part (70%) of 2018 run.
- Different selections for the two parts.



final

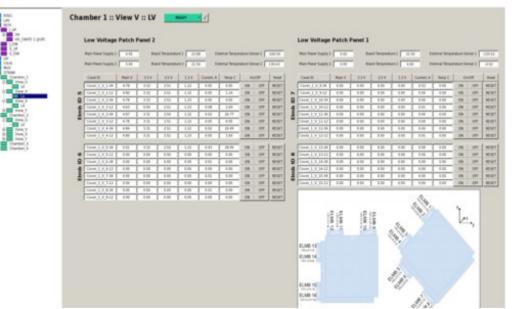
Track extrapolation at collimator in background-enriched sample of upstream events (data)

$K^{\dagger} \rightarrow \pi^{\dagger} \pi^{0}$ normalization channel

Normalization channel: $K^+ \to \pi^+ \pi^0 (\pi^0 \to \gamma \gamma)$, same selection as the signal one, but collected with minimum bias trigger and no photon/multiplicity rejection. Used to evaluate number of kaon events N_K

- N_K systematic uncertainty of 3.5% is due to Data/MC discrepancy;
- Cancellation of systematics in the signal/normalization:
 - π^{+} ID and reconstruction;
 - Detectors efficiencies;
 - K⁺ ID and reconstruction;
 - Beam-related acceptance loss;

JINR+CERN responsibility: Spectrometer made of straw tubes working in vacuum


JINR contribution is very important and is defining in many aspects:

- R&D (2 prototypes),
- MC simulation,
- Straws geometry,
- Frames etc. design,
- straws production (~7000 in JINR),
- Modules assembling.

Installed in 2014.

HV and LV power suppliers

Detector Control System (DCS) for the NA62 Spectrometer