

Recent experimental progress on hadron spectroscopy

Xiao-Rui Lyu

(xiaorui@ucas.ac.cn)
University of Chinese Academy Sciences

Outline

- Introduction
- Light hadron spectroscopy
- Heavy hadron spectroscopy conventional and exotic
 - √ Heavy meson
 - ✓ Heavy baryon
- > Summary

Introduction

- Quarks and gluons not isolated in nature.
 - Formation of colorless bound states: "Hadrons"
 - 1-fm scale size of hadrons?
- Hadron spectroscopy provides opportunities to study QCD in the nonperturbative region
 - Extensive and precise spectroscopy combined with a thorough theoretical analysis, will add substantially to our knowledge of QCD
- Complex exotic hadrons can reveal new or hidden aspects of the dynamics of strong interactions
 - Predicted in quark model
 - Recent results show strong evidence for their existence

Different types of hadrons to be explored

Baryons are red-bluegreen triplets

Mesons are coloranticolor pairs

Λ=usd

π=ūd

Other possible combinations of quarks and gluons:

Pentaquark

S= +1 Baryon

H di-Baryon

Tightly bound 6 quark state

Glueball

Color-singlet multigluon bound state

Tetraquark

Tightly bound diquark & anti-diquark

Molecule

loosely bound mesonantimeson "molecule"

qq -gluon hybrid mesons

COOC

Main contributors worldwide

• e^+e^- collider

Hadron collider

Fixed-target experiments

Discoveries of many new hadrons

Light hadorns

Light hadron spectroscopy

Strangeonium [ss] spectroscopy

• Y(2175)/ ϕ (2170): a strangeonium(-like) state

- \triangleright Theorists explain $\phi(2170)$ as
 - ✓ ssg hybrid
 - \checkmark 2³D₁ or 3³S₁ s \bar{s}
 - √ tetraquark
 - ✓ Molecular state $\Lambda \overline{\Lambda}$
 - $\checkmark \phi f_0(980)$ resonance with FSI
 - ✓ Three body system **¢KK**

New axial-Vector strangeonia

Based on 10B J/ψ events, a PWA fit to $J/\psi \rightarrow \phi \eta \pi^0$

Based on 2.7B $\psi(3686)$ events, a PWA fit to $\psi(3686) \rightarrow \phi \eta \eta'$

PRL134, 191901 (2025)

5
6
3

$$h_1(2300)$$
 $J^{PC} = 1^{+-}$ observations!
 $M = 2316 \pm 9 \pm 30 \text{MeV/c}^2$
 $\Gamma = 89 \pm 15 \pm 26 \text{ MeV}$

- $h_1(1900)$: candidate for $h_1(2P)$ strangeonium state
- X(2000): candidate for $\phi(3S)$ or for $\phi(3D)$ strangeonium state
- $h_1(2300)$: mass lower than the predicted mass of $h_1(3P)$. Full strange $[s\bar{s}s\bar{s}]$ tetraquark candidate?

Spin-exotic light mesons

Over three decades, 4 candidates are reported so far.

Three 1^{-+} isovectors

- $\pi_1(1400)$: seen in $\eta\pi$
- $\pi_1(1600)$: seen in $\rho \pi$, $\eta' \pi$, $b_1 \pi$, $f_1 \pi$
- $\pi_1(2015)$: seen in $b_1\pi$ and $f_1\pi$

One 1⁻⁺ isoscalar

• $\eta_1(1855)$: observed in $J/\psi \to \gamma \eta \eta'$

BESIII, PRL129, 192002 (2022); PRD106, 072012 (2022)

	Decay mode	Reaction	Experiment
π ₁ (1400)	ηπ	$\pi^-p o \pi^-\eta p$ $\pi^-p o \pi^0\eta n$ $\pi^-p o \pi^-\eta p$ $\pi^-p o \pi^0\eta n$ $\bar{p}n o \pi^-\pi^0\eta n$ $\bar{p}p o \pi^0\pi^0\eta$	GAMS KEK E852 E852 CBAR CBAR
	$ ho\pi$	$\bar{p}p \to 2\pi^+ 2\pi^-$	Obelix
	η′π	$\pi^{-}Be \rightarrow \eta'\pi^{-}\pi^{0}Be$ $\pi^{-}p \rightarrow \pi^{-}\eta'p$	VES E852
$\pi_1(1600)$	$b_1\pi$	$\pi^{-}Be \rightarrow \omega\pi^{-}\pi^{0}Be$ $\bar{p}p \rightarrow \omega\pi^{+}\pi^{-}\pi^{0}$ $\pi^{-}p \rightarrow \omega\pi^{-}\pi^{0}p$	VES CBAR E852
	$ ho\pi$	$\pi^{-}Pb \to \pi^{+}\pi^{-}\pi^{-}X$ $\pi^{-}p \to \pi^{+}\pi^{-}\pi^{-}p$	COMPASS E852
	$f_1\pi$	$\pi^- p \to p \eta \pi^+ \pi^- \pi^-$ $\pi^- A \to \eta \pi^+ \pi^- \pi^- A$	E852 VES
π ₁ (2015)	$f_1\pi$ $b_1\pi$	$\pi^{-}p \to \omega \pi^{-}\pi^{0}p$ $\pi^{-}p \to p\eta \pi^{+}\pi^{-}\pi^{-}$	E852

Some studies indicated that $\pi_1(1400)$ and $\pi_1(1600)$ can be one pole

[EPJC 81, 1056 (2021)][PRL122, 042002 (2019)]

Observation of $\pi_1(1600)$ in $\chi_{c1} \rightarrow \eta' \pi^+ \pi^-$

- $\chi_{c1} \to \pi^+ \pi^- \eta'$ process provides an opportunity to search for $J^{PC} = 1^{-+}$ exotics in the $\eta' \pi$ systems.
- CLEO-c found evidence for an exotic P-wave $\eta'\pi$ amplitude around 1.6 GeV with ~4 σ in this process.
- With 2.7B ψ (3686) events, BESIII performs amplitude analysis of $\chi_{c1} \rightarrow \pi^+\pi^-\eta'$ via ψ (3686) $\rightarrow \gamma \chi_{c1}$

state	J^{PC}	Decay mode	Significance
$\pi_1(1600)$	1-+	$\pi^{\pm}\eta'$	$>> 10\sigma$
$(\pi\pi)_{S-wave}$	0++	$\pi^{\pm}\eta'$	$>> 10\sigma$
$a_0(980)$	0++	$\pi^{\pm}\eta'$	$> 10\sigma$
$f_2(1270)$	2++	$\pi^+\pi^-$	$>> 10\sigma$
$a_2(1320)$	2++	$\pi^{\pm}\eta'$	$> 5\sigma$
$f_2(1950)$	2++	$\pi^+\pi^-$	$> 10\sigma$
$f_0(2200)$	0++	$\pi^+\pi^-$	$> 10\sigma$
$a_0(1710)$	0++	$\pi^{\pm}\eta'$	$> 10\sigma$
$f_2(PHSP)$	2++	$\pi^+\pi^-$	$> 5\sigma$

Spin-parity of the $\pi_1(1600)$ favors $J^{PC} = 1^{-+}$ is favored over 0^{++} , 2^{++} and 4^{++} assignments with significances larger than 10σ

Heavy mesons

Observation of the P-wave $B_c^+(1P)$

- In 1998, the B_c meson was discovered at the Tevatron
- Despite its ground state, only the 2S states have been observed at the LHC in 2014 and 2019
- LHCb studies $B_c^+(1P) \to \gamma B_c^+$

arXiv:2507.02142; arXiv:2507.02149

$$M_1 = 6704.8 \pm 5.5 \pm 2.8 \pm 0.3 \text{ MeV}/c^2,$$

 $M_2 = 6752.4 \pm 9.5 \pm 3.1 \pm 0.3 \text{ MeV}/c^2,$

Theory-constrained six-peak fit

The observed structure is expected to be contributed from multiple $B_c^+(1P) \to B_c^{*+}\gamma$ decays, which requires larger statistics and better resolution to be distinguished.

Open-charm tetraquark states

$$B^+ \to D^- D_s^+ \pi^+$$

$$B^0 \to \overline{D}{}^0 D_s^+ \pi^-$$

$$B^+ \to D^{*\pm} D^{\mp} K^+$$

PRL125, 242001 (2020)

PRD102, 112003 (2020)

PRL133, 131902 (2024)

	Mass (GeV)	Width (GeV)	J^P
$T_{c\bar{s}0}^*(2900)^0 \& T_{c\bar{s}0}^*(2900)^{++}$	$2.908 \pm 0.011 \pm 0.020$	$0.136 \pm 0.023 \pm 0.020$	0+
$X_0(2900)/T_{cs0}^*(2870)^0$	$2.866 \pm 0.007 \pm 0.002$	$0.057 \pm 0.012 \pm 0.004$	0+
$X_1(2900)/T_{cs1}^*(2900)^0$	$2.904 \pm 0.005 \pm 0.001$	$0.110 \pm 0.011 \pm 0.004$	1-

$T_{cs0}^*(2870)^0 \ [cs\overline{u}\overline{d}] \text{ in } B^- \to D^- D^0 K_S^0$

PRL134, 101901 (2025)

Amplitude analysis of various components of D_{sJ}^{**-} and T_{cs0}^{*} states

- Observation of a resonant $J^P=0^+$ structure, named $T^*_{cs0}(2870)^0$, in the $D^0K^0_s$ system with 5.3 σ significance, no observation of $T^*_{cs1}(2900)^0$
- Relative decay width provide precise tests of the isospin symmetry

$$R_{\rm I}(T_{cs}^{*0}) = \frac{\mathcal{B}(B^- \to D^- D^0 \overline{K}^0) FF(T_{cs}^{*0} \to D^0 K_{\rm S}^0)}{\mathcal{B}(B^- \to D^- D^+ K^-) FF(T_{cs}^{*0} \to D^+ K^-)}$$

$$M(T_{cs0}^{*0}) = 2883 \pm 11 \pm 8 \text{ MeV}/c^2,$$

 $\Gamma(T_{cs0}^{*0}) = 87_{-47}^{+22} \pm 17 \text{ MeV},$

$$\bullet \ R_{\rm I}(T^*_{cs0}(2870)^0) = 3.3 \pm 1.1 \pm 1.1 \pm 1.1 \pm 1.1 \text{ and } R_{\rm I}(T^*_{cs1}(2900)^0) = 0.15 \pm 0.15 \pm 0.05 \pm 0.05 \pm 0.05 \pm 0.05$$

isospin violation indicated for T_{cs0}^* (2900)⁰

$T_{c\bar{s}}^{0/++}$ in $D_{s1}(2460)^+ \to D_s^+ \pi^+ \pi^-$

Joint amplitude analysis of the three channels

Sci. Bull. 70, 1432 (2025)

 $224 \pm 23 \pm 16$

 $96 \pm 16 \pm 23$

$$B^+ \to \overline{D}{}^0 D_{s1}(2460)^+, B^0 \to D^{(*)-} D_{s1}(2460)^+ \ (D_{s1}(2460)^+ \to D_s^+ \pi^+ \pi^-)$$

 $T_{c\bar{s}}^{0/++}$ is observed with significance larger than 10σ

 $474 \pm 30 \pm 18$

 $2327 \pm 13 \pm 13$

 $f_0(500)$

 T_{cs}^{++}/T_{cs}^{0}

 $248^{+40}_{-54} \pm 39$

 $156^{+27}_{-38}\pm25$

Overpopulated charmonium spectrum

arXiv:1511.01589, arXiv:1812.10947

Overpopulated observed new charmonium-like states, i.e. "XYZ":

- Most of them are close to the mass thresholds of charmed meson pairs
- Some are not accommodated as conventional meson
 ==> candidate of exotic hadron states
- More efforts are needed to pin down their nature

100 90 Y(4230) → R-scan → R-scan → √s=3.8713 — Fit Y(4320) ↑ 40 ↑ 30 ↑ 20 ↑ 40 ↑ 20 ↑ 40 ↑ 30 ↑ 20 ↑ 40 ↑ 20 ↑ 20 ↑ 3

Date of arXiv submission

$Y(4260) \rightarrow Y(4230) & Y(4320)$

$$M_{Y(4230)} = 4221.4 \pm 1.5 \pm 2.0 \text{ MeV/c}^2$$

 $\Gamma_{Y(4230)} = 41.8 \pm 2.9 \pm 2.7 \text{MeV}$

 $M_{Y(4320)} = 4298 \pm 12 \pm 26 \text{ MeV/c}^2$ $\Gamma_{Y(4320)} = 127 \pm 17 \pm 10 \text{ MeV}$

4.4 4.5 4.6 4.7 4.8

4.1 4.2 4.3

Observations of three heavy Y(4500), Y(4710) and Y(4790) states

Improved measurement of

$$\sigma(e^+e^-
ightarrow \pi^+\pi^-h_c)$$

PRL135, 071901 (2025)

- Initially observed by CLEO-c at \sqrt{s} =4.17 GeV [PRL107, 041803 (2011)]
- Cross sections of $e^+e^- \to \pi^+\pi^-h_c$ obtained by BESIII at 3.9-4.6 GeV, found two structures [PRL118, 092002 (2017)]
- New data collected by BESIII between 4.18-4.95 GeV (27 data samples)

PRL107, 041803 (2011) – CLEO-c PRL111, 242001 (2013) – BESIII CPC 38, 043001 (2014)

PRL118, 092002 (2017) - BESIII

PRL135, 071901 (2025)

	Y(4230)	Y(4360)	>50 Y(4500)
Parameter	R_1	R_2	R_3
$M~({ m MeV/c^2}) \ \Gamma~({ m MeV})$	$\begin{array}{c} 4223.6^{+3.6+2.6}_{-3.7-2.9} \\ 58.5^{+10.8+6.7}_{-11.4-6.5} \end{array}$	$\begin{array}{r} 4327.4_{-18.8-9.3}^{+20.1+10.7} \\ 244.1_{-27.1-18.3}^{+34.0+24.2} \end{array}$	$4467.4_{-5.4-2.7}^{+7.2+3.2} \\ 62.8_{-14.4-7.0}^{+19.2+9.9}$

a bit larger width $\Gamma_{Y(4360)}$ = 120±21 MeV

Inclusive and exclusive J/ψ and $\psi(3686)$ production

PRD111, 052007 (2025)

no evidence of hidden decays involving the J/ψ meson

cc Meson	Decays into J/ψ	Decays into $\psi(3686)$
$\chi_{c1}(3872)$	$\pi^+\pi^-J/\psi$, $\omega J/\psi$, $\gamma J/\psi$	γψ(3686)
$Z_c(3900)$	$\pi J/\psi$	
$\chi_{c0}(3915)$	$\omega J/\psi$	
$\psi(4040)$	$\eta J/\psi$	
X(4160)	$\phi J/\psi$	***
$\psi(4230)$	$\pi\pi J/\psi$, KKJ/ψ , $\eta J/\psi$	$\pi^{+}\pi^{-}\psi(3686)$
X(4350)	$\phi J/\psi$	
$\psi(4360)$	$\pi^+\pi^-J/\psi$, $\eta J/\psi$	$\pi^{+}\pi^{-}\psi(3686)$
Y(4500)	K^+K^-J/ψ	
$\psi(4660)$		$\pi^{+}\pi^{-}\psi(3686)$
Y(4710)	K^0K^0J/ψ	

- Missing exclusive processes around the Y(4360) region
- Excess ~ 23% of the Y(4360)_{prompt} inclusive cross section

Three new charmonium(-like) states PRL133, 131902 (2024)

in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

Simultaneous fit to $B^+ \to D^{*+} D^- K^+$ and $D^{*-} D^+ K^+$ to relate the C-parities of the charmonium(-like) states $R \to D^{*+}D^-$ and $R \to D^{*-}D^+$:

This work		Known states [6]		$c\bar{c}$ prediction [34]	
$\eta_c(3945)$	$J^{PC} = 0^{-+}$	X(3940) [9, 10]	$J^{PC}=?^{??}$	$\eta_c(3S) J^{PC} = 0^{-+}$	
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130^{+92}_{-49}{}^{+101}_{-70}$	$m_0 = 3942 \pm 9$	$\Gamma_0 = 37^{+27}_{-17}$	$m_0 = 4064 \Gamma_0 = 80$	
$h_{-}(4000)$	$J^{PC} = 1^{+-}$	$T_{c\bar{c}}(4020)^0$ [35]	$J^{PC}=?^{?-}$	$h_c(2P)$ $J^{PC} = 1^{+-}$	
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$m_0 = 4025.5 {}^{+2.0}_{-4.7} \pm 3.1$	$\Gamma_0=23.0\pm6.0\pm1.0$	$m_0 = 3956 \Gamma_0 = 87$	
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$			$\chi_{c1}(2P)$ $J^{PC} = 1^{++}$	
$m_0 = 4012.5 {}^{+3.6}_{-3.9} {}^{+4.1}_{-3.7}$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$			$m_0 = 3953 \Gamma_0 = 165$	
$h_c(4300)$	$J^{PC} = 1^{+-}$			$h_c(3P) J^{PC} = 1^{+-}$	
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58^{+28+28}_{-16-25}$			$m_0 = 4318 \Gamma_0 = 75$	
		$\chi_c(4274) [36]$	$J^{PC} = 1^{++}$	$\chi_{c1}(3P)$ $J^{PC} = 1^{++}$	
		$m_0 = 4294 \pm 4 ^{+6}_{-3}$	$\Gamma_0 = 53 \pm 5 \pm 5$	$m_0 = 4317$ $\Gamma_0 = 39$	

- different $D^{*\pm}D^{\mp}$ mass distributions due to interference of two *C*-parities
- At least three charmonium(-like) states are observed for the first time, which are candidates for $h_c(2P), \chi_{c1}(2P) \text{ and } h_c(3P)$

Bottomium(-like) $[b\overline{b}]$ states

Belle, JHEP10, 220 (2019)

Υ(10753) property has Very high partial widths of hadronic transitions

- D-wave state with S-D mixing enhanced due to hadron loops
- exotic state: hybrid, tetraquark

Further investigation on the $\Upsilon(10753)$

Excellent confirmation

- $M = (10756.6 \pm 2.7 \pm 0.9) \text{ MeV/c}^2$
- $\Gamma = (29.0 \pm 8.8 \pm 1.2) \text{ MeV}$

Belle II, PRL130, 091902 (2023)

observation of $\Upsilon(10753) \rightarrow \omega \chi_{b1,2}$

Different resonances display different preferences for ω vs. 3π (non- ω) decays!

Toponium $[t\bar{t}]$ state?

• $t\bar{t}$ pairs do not form stable bound states given the short lifetime of the top quark

• Non-Relativistic QCD predicts the formation at threshold ($m_{t\bar{t}} \sim 345 \text{ GeV}$) of quasi-bound-state (Toponium): spin-singlet-color-singlet ${}^{1}S_{0}^{[1]}$ η_{t}

• Experimentally extremely challenging: small effect (1% of total xs) and very large

experimental resolution

CMS, arXiv:2503.22382; arXiv:2507.05119

Data are consistent with a color-singlet ${}^{1}S_{0}^{[1]}$ $t\bar{t}$ quasi-bound state η_{t}

Study on fully heavy tetraquark state

- \clubsuit Existence of $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$ states ($Q_i=c \text{ or } b$) is expected by many QCD models
- $T_{hh\bar{h}\bar{b}}$ was searched for at LHCb and CMS, but not observed

[LHCb, JHEP 10, 086 (2018); CMS, PLB808, 135578(2020)]

- $T_{cc\bar{c}\bar{c}}$ states predicted to have $M \in [5.8, 7.4] \text{ GeV}/c$, away from known quarkonia and quarkonium-like exotic states
- **\Leftharpoonup** LHCb observation of the first fully charmed tetraquark state X(6900) [$cc\bar{c}\bar{c}$] in $J/\psi+J/\psi$ final states [LHCb, Sci. Bull. 23, 1983 (2020)]

- \clubsuit ATLAS and CMS both confirmed the X(6900) state in $J/\psi+J/\psi$ final states
- CMS observed a new structure X(6600) and find an evidence of the X(7100)
- LHCb, ATLAS and CMS all see a broad enhancement at the low mass region

Fully charmed tetraquark [cccc]

BPH-24-003

with run 2+3 data

- All states and dips are above 5σ
- Interferences are necessary

Parameter	Run 2 [12]	Run 2 + 3
1 arameter	[Interf.]	
$m(BW_1)$	$6638 \begin{array}{l} +43+16 \\ -38-31 \end{array}$	6593 $^{+15}_{-14}$ \pm 25
$\Gamma(\mathrm{BW}_1)$	$440 ^{+230+110}_{-200-240}$	446 $^{+66}_{-54}$ \pm 87
$m(BW_2)$	$6847 \begin{array}{l} +44+48 \\ -28-20 \end{array}$	$6847 {}^{+10}_{-10} \pm 15$
$\Gamma(\mathrm{BW}_2)$	$191 ^{+66+25}_{-49-17}$	135 $^{+16}_{-14} \pm 14$
$m(BW_3)$	$7134 \begin{array}{l} +48+41 \\ -25-15 \end{array}$	$7173_{-10}^{+9}\pm 13$
$\Gamma(BW_3)$	97 $\begin{array}{c} +40+29 \\ -29-26 \end{array}$	73 $^{+18}_{-15} \pm 10$

- \triangleright Significance of $X(6900) = 7.9\sigma$
- ➤ Significance of $X(7100) = 4.0\sigma$

Spin analysis of $X[cc\overline{c}\overline{c}]$ states

 $J^{PC} = 2^{++}$ interpretation is preferred for the fully charmed tetraquark states X(6600), X(6900), and X(7100).

Heavy baryons

Observation of new \(\mathbb{E}\)c baryons

• Three excited Ξ_c^0 are observed in decaying into $\Lambda_c^+ K^-$

Four excited Ξ_c^+ are observed in decaying into $\Xi_c^+\pi^+\pi^-$

Expecting a rich spectrum of charmed baryon states; yet many states not observed yet

Spin-parity of the $\Xi_c(3055)$

Amplitude analysis of the cascade weak decay of

Expecting a rich spectrum of charmed baryon states; yet many states not observed yet

 $6.5(3.5)\sigma$ for charged (neutral) $\Xi_c(3055)$

Xiao-Rui LYU

Observation of the hidden-charm strange pentaquark [ccuds]

• LHCb found evidence for [ccuds] pentaquark candidate with strangeness:

 $P_{c\bar{c}s}$ (4459)⁰ in Ξ_b⁻ → J/ψΛK⁻ decays, near threshold of Ξ_c⁰ \overline{D} ^{*0}:

$$m(P_{c\bar{c}s}(4459)^0) = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}$$

 $\Gamma(P_{c\bar{c}s}(4459)^0) = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$

- $P_{c\bar{c}s}(4338)^0 \rightarrow J/\psi \Lambda$ observed in $B^- \rightarrow J/\psi \Lambda \bar{p}$ (>10 σ)
- $J^P = \frac{1}{2}^-$ preferred and close to $\mathcal{E}_c^+ D^-$ threshold
 - \triangleright 0.8 MeV above $\mathcal{Z}_c^+ D^-$;
 - \triangleright 2.9 MeV above $\mathcal{E}_c^0 \overline{D}{}^0$

Evidence for $\Upsilon(1S, 2S) \rightarrow P_{c\bar{c}s}(4459)^0 X$

arXiv:2502.09951

• Belle reports evidence for $P_{c\bar{c}s}(4459)^0 \to J/\psi \Lambda$ in inclusive $\Upsilon(1S,2S)$ decays

significance is 3.3σ including systematics.

consistent with LHCb results

Mode	$\mathcal{B}(\times 10^{-6})$
$\Upsilon(1S) \rightarrow P_{c\bar{c}s}(4459)^0/\bar{P}_{c\bar{c}s}(4459)^0 + anything$	
$\Upsilon(2S) \to P_{c\bar{c}s}(4459)^0/\bar{P}_{c\bar{c}s}(4459)^0 + anything$	$2.9\pm1.7\pm0.4$
$\Upsilon(1S) \rightarrow P_{c\bar{c}s}(4338)^0 / \bar{P}_{c\bar{c}s}(4338)^0 + anything$	< 1.8
$\Upsilon(2S) \rightarrow P_{c\bar{c}s}(4338)^0 / \bar{P}_{c\bar{c}s}(4338)^0 + anything$	< 1.6

No evidence for $P_{c\bar{c}s}(4338)^0$

Summary

- An exciting period of finding new hadrons, among which most of them are candidates of exotic hadrons
- **Light hadrons:** high statistics data is crucial to identify exotic feature of different known states
 - strangenium(-like) states: axial-vector states $h_1(1900)$ and $h_1(2300)$
 - 1⁻⁺ spin-exotic state $\pi_1(1600)$ observed in charmonium decays

Heavy hadrons:

- observation of the P-wave $B_c^+(1P)$ states and the charged Ξ_c (2923)⁺
- $T_{c\bar{s}}^{0/++}$ observed $D_{s1}(2460)^+ \to D_s^+ \pi^+ \pi^-$
- better understanding of quarkonium(-like) states: $h_c(4000)$, $\chi_{c1}(4010)$ and $h_c(4300)$; Y(4500), Y(4710) and Y(4790); Y(10753); $[Q\bar{Q}]$ or $[Q\bar{Q}|q\bar{q}]$? Observation of toponium η_t ?
- advances in fully charmed tetraquark: X(6600), X(6900) and X(7100) [$c\bar{c}c\bar{c}$]
- More results based on higher statistics data can be expected regarding to the upcoming 3x£ upgraded BEPCII-U, ongoing LHC RUN3 and Belle II.

Thank you!! 谢谢

Backup

\odot Recall that the $1P_1'$, $1P_1$ are mixtures of 1^1P_1 , 1^3P_1 states

States	$1^{3}P_{0}$	1P ₁	$1P_1'$	$1^{3}P_{2}$	
Dosavis	$B_c^{*+}(\to B_c^+\gamma)\gamma$	$B_c^+ \gamma$	$B_c^+ \gamma$	$B_c^{*+}(\to B_c^+\gamma)\gamma$	
Decays	$B_C (\rightarrow B_C \gamma) \gamma$	$B_c^{*+}(\to B_c^+\gamma)\gamma$	$B_c^{*+}(\to B_c^+\gamma)\gamma$	$B_c (\rightarrow B_c \gamma) \gamma$	
#peaks	1	2	2	1	

 \odot The value $\delta M = M(B_c^*) - M(B_c)$ is unknown since B_c^* has not been observed yet

Open flavor tetraquark

- D0 claimed evidence for the X(5568) in decaying to $B_s\pi^+$, interpreted as tetraqual state [bsud], but not seen in other experiments
- Observation of the open flavor tetraquark states $X_0(2900)$ and $X_1(2900)[cs\overline{u}\overline{d}]$ in $B^+ \to D^+D^-K^+$
- The $D_{s0}^*(2317)^+ (D_s^+\pi^0)$ state was observed in 2003.
- It is argued to contain some **tetraquark component** in several theoretical descriptions, whose I = 1 partners can exist in the $D_s^+\pi^\pm$ final states.
- <u>Cheng & Hou:</u> It would be astonishing if a doubly charged resonance is found. [PLB 566, 193 (2003)]

Fig. 2. Diagrams for (a) $B \to \bar{D}\tilde{D}_{0s}^{+}$, (b) $B^{+} \to D^{-}\tilde{D}_{1s}^{++}$ $(B \to \bar{D}\tilde{D}_{1s})$, (c) $\bar{B} \to \pi^{-}\tilde{D}_{s\bar{s}}$, $\pi^{-}\tilde{D}$, (d) $B \to D\tilde{D}_{\bar{s}}^{0}$.

Observation of a doubly charged tetraquark

 $T_{c\bar{s}0}^*(2900)^{++}$ [$c\bar{s}u\bar{d}$] and its neutral partner

 $T_{c\overline{s}0}^*(2900)^0 [c\overline{s}\overline{u}d]$

PRL131, 041902(2023) PRD108, 012017(2023)

- First simultaneous amplitude analysis of $B^+ \to D^- D_s^+ \pi^+ \& B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ with RUN 1+2 9 fb⁻¹ data
- $D_s\pi$ mass spectra well described by adding $J^P = 0^+ (> 7.5 \sigma)$ $T^a_{c\bar{s}0}(2900) > 9 \sigma$

	Mass (GeV)	Width (GeV)	J^P
$T_{c\bar{s}0}^*(2900)^0 \& T_{c\bar{s}0}^*(2900)^{++}$	$2.908 \pm 0.011 \pm 0.020$	$0.136 \pm 0.023 \pm 0.020$	0+
$X_0(2900)/T_{cs0}^*(2870)$	$2.866 \pm 0.007 \pm 0.002$	$0.057 \pm 0.012 \pm 0.004$	0+
$X_1(2900)/T_{cs1}^*(2900)$	$2.904 \pm 0.005 \pm 0.001$	$0.110 \pm 0.011 \pm 0.004$	1-

- $T_{c\bar{s}0}^a(2900)$ v.s. $X_0(2900)$
 - ✓ Similar mass, but width and flavor contents are different.

See parallel talk by Raul Rabadan

- no isospin relation: $[c\overline{s}u\overline{d}]$ v.s. $[cs\overline{u}\overline{d}]$
- U-spin relation: $[c\overline{s}\overline{u}d]$ v.s. $[c\overline{d}\overline{u}s]$
- $T_{c\bar{s}0}^a(2900)$ mass and width larger than $T_{cs0}(2900)$

The Y states

Y states: charmonium-like states with $J^{PC}=1^{--}$; Observed in direct e+e- annihilation or initial state radiation (ISR).

While not seen yet in B decays

• Improved knowledges from BESIII

Pentaquark states at LHCb

• Observation of [$c\overline{c}uud$] pentaquarks: $P_{c\overline{c}}(4312)^+$, $P_{c\overline{c}}(4440)^+$, $P_{c\overline{c}}(4457)^+$ in $\Lambda_b^0 \to J/\psi p K^-$ decays; near thresholds of $\Sigma_c^+ \overline{D}^0$, $\Sigma_c^+ \overline{D}^{*0}$, J^P not determined

• Evidence of [ccuud] pentaquark:

$$P_{c\bar{c}}(4337)^+$$
 in $B_s^0 \to J/\psi p\bar{p}$ decays

• Evidence for [ccuds] pentaquark candidate with strangeness:

 $P_{c\bar{c}s}$ (4459)⁰ in $\Xi_b^- \to J/\psi \Lambda K^-$ decays, near threshold of $\Xi_c^0 \overline{D}^{*0}$

