

Recent results of the Carpet-3 collaboration

Nikita Vasiliev from the name of the «Carpet-3» collaboration

Baksan Neutrino Observatory, Neutrino village

Baksan Neutrino Observatory detector complexes

Extensive Air Showers (EAS)

22.08.2025 4

Carpet EAS array since ~1973

22.08.2025 5

First modernization (Addition of the Muon Detector 175 m²)

Carpet-3 facility (Current state)

A – Carpet detector array;

B – outer detector stations (ODS);

C – Underground muon detector (MD);

D – new ODS (plastic scintillator);

E – unfinished ODS;

r.p. (relativistic particle) – most probable energy deposition in the scintillator created by relativistic muons.

Reconstruction methodology

- **EAS** arrival direction (θ, φ) is reconstructed by relative time lags of 4 main ODS with flat shower front approximation.
- ❖Shower size Ne and age s is reconstructed by fitting particle density spatial distribution with NKG function:

$$ho_e(r,s,N_e) = \left(rac{N_e}{r_M^2}
ight)rac{\Gamma(4,5-s_N)}{2\pi\Gamma(s_N)\Gamma(4,5-2s_N)}igg(rac{r}{r_M}igg)^{s_N-2}igg(1+rac{r}{r_M}igg)^{s_N-4,5}$$

Shower core position reconstruction

- Identify the position of the detector with maximum energy deposition in each of the 20 central array rows/columns.
- Assign a weight equal to the total energy deposition in the row/column.
- Fit straight lines to the weighted points via LSM.
- The intersection of the lines defines the shower axis.

Neural network gamma-ray classification

- ❖ We estimate the type of primary particle using a neural network classifier trained on the MC event set (80609 events).
- The network is trained to distinguish between events with proton and photon primary particles.

UHE γ -astronomy at the BNO (GRB221009A)

The event associated with GRB 221009A

- Estimated energy of the primary particle (E= 300 ± 40 TeV).
- Air Shower is photon-like (probability of a hadronic primary is 0,03 %).
- ❖ The event is coincident with the GRB in its arrival direction and time (chance probability ~ 0,9 %).

GRB event classification

Carpet-3 model in Geant4

- ❖Includes 1251 scintillation detectors.
- ❖ Passive geometry taken into account (central Carpet building and muon detector embankment).
- The response of each detector is calculated by simulating scintillation photons reaching the PMT photocathode.

Record and reconstruction triggers

- ❖ Total energy deposition in the central Carpet exceeds 15 r.p.
- At least four ODS exceed the 0.5 r.p. threshold.
- ❖ Total energy deposition in the central Carpet exceeds 15 r.p.
- At least four ODS exceed the 0.5 r.p. threshold.
- ❖At least 8 r.p. in 50 central cells
- Reconstructed axis must lie within the central 12.6×12.6 m² area.
- Reconstructed zenith angle $\theta \le 40$.

Trigger efficiency estimation

Conclusions

- ❖ A detailed description of the Carpet-3 detector array is introduced.
- ❖ A set of reconstruction algorithms of such parameters as EAS core position, arrival direction, age, size and primary type is presented.
- The developed methodology allowed us to estimate the efficiency of the detector array depending on the energy and the type of primary particle.
- ❖ Main goals for future research are developing more accurate reconstruction methods with the help of machine learning + testing the model precision on a large scale of energies.

Thank you for your attention!

```
D. D. Dzhappuev<sup>1</sup>, I. M. Dzaparova<sup>1,2</sup>, T. A. Dzhatdoev<sup>1,3</sup>, I. S. Karpikov<sup>1</sup>, M. M. Khadzhiev<sup>1</sup>, N. F. Klimenko<sup>1</sup>, A. U. Kudzhaev<sup>1</sup>, A. N. Kurenya<sup>1</sup>, A. S. Lidvansky<sup>1</sup>, O. I. Mikhailova<sup>1</sup>, V. B. Petkov<sup>1,2</sup>, E. I. Podlesnyi<sup>4,1</sup>, N. A. Pozdnukhov<sup>1</sup>, V. S. Romanenko<sup>1</sup>, G. I. Rubtsov<sup>1</sup>, S. V. Troitsky<sup>1,3</sup>, I. B. Unatlokov<sup>1</sup>, N.A. Vasilev<sup>1</sup>, A. F. Yanin<sup>1</sup>, K. V. Zhuravleva<sup>1</sup>
```

¹ Institute for Nuclear Research of the RAS, Moscow, Russia
 ² Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia
 ³ Lomonosov Moscow State University, Moscow, Russia
 ⁴ Norwegian University for Science and Technology, Institutt for fysikk, Trondheim, Norway

CORSIKA simulations

- *Over 200000 EAS events were generated for primary γ-quanta, protons, helium, and iron nuclei.
- ❖Zenith angles ranged from 0° to 40°.
- ❖Discrete uniform energy distribution from 10 to 300 TeV (1 TeV steps).
- ♦ Observation level: 1700 m above sea level.

Experimental distribution of sum of r.p. vs number of triggered detectors

Comparison with the experiment

Comparison with the experiment

Time distributions of ODS triggers (0 equals central Carpet trigger time)

(x, y) and (θ, ϕ) reconstruction precision

