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SURFACE α’s AS A BACKGROUND

0νββ BOLOMETRIC SERCHES WIMP SEARCHES

Bolometric experiments (e.g., CUORE) face high background
from degraded α particles in support materials (mainly
copper).
Next-gen experiments (CUPID, AMoRE) will use scintillating
crystals for better particle ID.
Surface β's (e.g., ²¹⁴Bi) remain a significant background
source.

Searches with scintillating crystals are sensitive to surface
contamination of the reflector.
Searches with bolometers face β and nuclear recoil background
from surface contamination.
Searches with TPCs are affected by ²²²Rn diffusion; Rn
outgassing can be measured for some materials only.
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REQUIREMENTS FOR NEXT-GENERATION 
α DETECTOR

       
Sensitivity to surface ²³²Th or ²³⁸U contamination down to a few nBq/cm²

Area ≥ 1 m²
Background ≤ 10⁻⁸ counts/s/cm² in the full α range

Capability to distinguish different parts of the ²³²Th and ²³⁸U chain that are out of equilibrium
Energy resolution ≤ 20 keV FWHM to distinguish different α peaks

Sensitivity to depth profile of surface contamination
No deformation induced by e.g. dead layers
Energy resolution of few keV FWHM

NONE OF THE EXISTING TECHNOLOGIES SATISFY ALL THESE REQUIREMENTS!
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CRYOGENIC CALORIMETERS

Highly sensitive calorimeter operated at cryogenic temperature (~10 mK).
Energy measured as temperature variation of the absorber:

            MAIN ADVANTAGES

Detector modularity
Stable long-term operation possible
Great dynamic range, few keV to 10 MeV
Excellent energy resolution (≤10 keV FWHM)
Possibility to use different absorber crystals
and select the one with the lowest radioactive
contamination
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             DETECTOR STRUCTURE

Large-area crystal wafer as an energy absorber.
Mounted on a minimally-sized frame.
Readout by a Neutron Transmutation Doped (NTD) thermistor
glued on it.

              MATERIAL CHOICE

Silicon is selected for its purity and accessibility.
High-resistivity intrinsic float-zone silicon is preferred.
Resistivity ≥ 10 kΩ·cm for low heat capacity.
Wafer size: 15 cm (29 modules for 1 m²) 

              DETECTOR HOLDER DESIGN

Area facing wafer: ~20 cm² (1/10 of wafer’s side).
Frame is suitable for mounting one tower in a 40-50 cm
diameter cryostat.
Features for easy mounting, dismounting, and sample exchange.

THE DETECTOR CONCEPT
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THE DETECTOR PROTOTYPE

             PROTOTYPE CONSTRUCTION

4 silicon wafers
Diameter: 15 cm
Thickness: 1 mm
Mounted on 2 copper 

           frames (2 wafers/frame)

              TESTING

Several runs between February 2023 and April 2024
Location: installed in the CROSS cryostat at Canfranc

              DATA

Runs:
1-hour run with LED pulses, January 
7-days run for alpha measurements, January
3-days background run with 3 detectors, March

Detectors:
A wafer w/o alpha sources (ch 80, 81)
A wafer with an alpha source ²¹⁰Po (ch 82)
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                 SYSTEM DESIGN

Utilizes a light source (LED or laser) at room temperature
Light is distributed to detectors via optical fibers 

             CALIBRATION METHOD
Injects light pulses with varying amplitudes to linearize the detector response
Energy calibration:  the Poisson statistics of the light

             CURRENT ACHIEVEMENT AND GOALS
Technique proven effective from ~100 eV to 10 keV
Aim to extend this method up to 10 MeV 

             ADVANTAGES
Simplifies the operation of the detectors
Could potentially replace heater-based stabilization

LED CALIBRATION SYSTEM 7



0 500 1000 1500 2000 2500
Time [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

O
F 

A
m

pl
itu

de
 [a

rb
ita

ry
 u

ni
ts

]

250 300 350 400
Time [s]

1

1.002

1.004

1.006

O
F 

A
m

pl
itu

de

250 300 350 400
Time [s]

1.0045

1.005

1.0055

1.006

O
F 

A
m

pl
itu

de

            A RUN WITH LED PULSES

13 amplitudes
~200 pulses per amplitude
Amplitude Variation: Pulse widths change
according to a set pattern
Pulse Width Pattern: 

             200, 150, 100, 75, 50, 30, 20, 10, 5, 3, 1,
             0.5, 0.2 µs

LED RUN DATA PROCESSING 8

before stabilization

after

Ch 82, January
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Self-calibration 

based on the Poisson

statistics of the light
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SELF-CALIBRATION PRIPCIPLE
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SELF-CALIBRATION RESULTS
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MEASUREMENT WITH α SOURCE
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TEMPERATURE DRIFT CORRECTION FIT FUNCTION Gaussian
Flat

backgroung

Low-energy tail

For ²¹⁰Po peak:
FWHM = 107 ± 5 keV 
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HIGH-ENERGY BACKGROUND
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ALL EVENTS

M1 EVENTS

Radius of the wafer (7.5 cm²)

Ch 81,  March Ch 80,  March
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CONCLUSIONS

Successfully developed a silicon bolometric detector optimized for rare event detection.

Demonstrated the effectiveness of the LED self-calibration system, covering a wide energy

range from ~ keV to 10 MeV.

First alpha measurement was conducted.

The detector's sensitivity in both high-energy alpha and low-energy regions highlights its

potential for next-generation neutrinoless double beta decay and dark matter experiments.

NEXT STEPS

Consider switching to sapphire wafers to improve energy resolution.

Assemble the detector in a cleanroom environment to minimize contamination and improve

background levels.

Replace the LED calibration system with a laser-based system for better precision.
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JOIN US!

SURFαCE recently funded by the Italian Ministry for University and Research via a FIS grant
We'll be hiring soon, for info contact giovanni.benato@gssi.it or anastasiia.shaikina@gssi.it


