Finite system size corrections to the effective coupling in ϕ^4 scattering

W. A. Horowitz
University of Cape Town
August 22, 2025

WAH and Du Plessis, Phys.Rev.D 105 (2022) 9, L091901 [2203.01259] WAH and Du Plessis, Phys.Rev.D 109 (2024) 3, 036013 [2308.08651]

Motivation: Thermodynamics of Small Systems

Does Finite Size Affect Thermodyn.?

Test using free scalar field theory

Mogliacci, Kolbé, and WAH, PRD102 (2020)

p decreases as T decreases for fixed L,
 converging to usual T = 0 Casimir effect

3

Finite Size Effects on Trace Anomaly

- Trace anomaly ∆
 - gives speed of sound
 - important for η /s extraction in QCD
 - due to running coupling
 - finite size breaks conformal invariance, but $\Delta = 0$ at LO
- Non-trivial conceptual issues for QCD:
 - How to regularize and renormalize?
 - · Dim reg difficult to generalize in finite size setting
 - Torons
- First examine finite size effects for running coupling in 2 => 2 scattering in φ⁴ theory

Denominator Regularization

Running Coupling

- Requires NLO loop calculation
 - Thus requires a regularization scheme
 - Which scheme to use?
- All current schemes have drawbacks:
 - Pauli-Villars breaks gauge invariance
 - Zeta breaks BRS invariance
 - Dim reg
 - Inappropriate for finite size system:
 - I know how to perform n sums, where n is a positive integer; how do I perform 3ϵ sums?
 - Dim reg requires symmetry in all directions; what if the system is asymmetric?

Define New Regularization Scheme

- Denominator regularization (den reg) instead of dimensional regularization (dim reg)
 - Keep number of dimensions fixed
 - Feynman x combine propagators
 - Analytically continue the power of the single denominator
 - Introduce fictitious scale μ to maintain dimensions
 - Allow for coefficient functions $f_{(n,p)}(\epsilon)$, $f_{(n,p)}(0) = 1$, that depend on original denominator power n and the superficial degree of divergence p
 - E.g.:

$$V(p^{2}; \mu, \epsilon) = -\frac{1}{2} \int_{0}^{1} dx \int \frac{d^{4-\epsilon}k}{(2\pi)^{4-\epsilon}} \frac{i\mu^{\epsilon}}{(k^{2} - \Delta^{2})^{2}}$$
$$\Rightarrow -\frac{1}{2} \int_{0}^{1} dx \int \frac{d^{4}k}{(2\pi)^{4}} \frac{if_{(2,0)}(\epsilon)(-\mu^{2})^{2\epsilon}}{(k^{2} - \Delta^{2})^{2+\epsilon}}$$

Advantages of Den Reg

- As easy to implement as dim reg
- Maintains Lorentz invariance
- Internally consistent:
 - Momenta and fields all in reps of SO(1,n)
 - Cf dim reg, where momenta are in SO(1,n- ϵ) but fields are in SO(1,n)
- Fixed dim's:
 - Well suited for thermal field theory, field theory in a finite-sized system, field theory in curved space
 - $-\gamma^5$ and $\epsilon^{\mu\nu\rho\sigma}$ uniquely well defined
 - Manifestly correct prediction of axial anomaly? (Dim reg must break Lorentz inv. to get axial anom.)
 - should maintain SUSY (to check; cf dim reg)

Examples: ϕ^4 Theory to NLO

$$= V \to i \frac{(-\mu^2)^{\epsilon} f_{(2,0)}(\epsilon)}{2} \int \frac{d^4k}{(2\pi)^4} \int_0^1 dx \frac{1}{(k^2 - \Delta^2)^{2+\epsilon}} dx$$

$$\Delta^2 \equiv m^2 - x(1-x)p^2 - i\varepsilon, \qquad p \equiv p_1 + p_2$$

- Need the integral $\int k_E^3 dk_E \frac{\mu^{2\epsilon}}{(k_E^2 + \Delta^2)^{2+\epsilon}} = \frac{1}{2} \frac{1}{\epsilon(1+\epsilon)} \left(\frac{\mu^2}{\Delta^2}\right)^{\epsilon}$
- Only $1/\epsilon$ divergence already, set $f_{(2,0)}(\epsilon) \equiv 1$
- Then

$$V(p^2; \mu) = -\frac{1}{2(4\pi)^2} \int_0^1 dx \left[\frac{1}{\epsilon} - 1 + \ln\left(\frac{\mu^2}{\Delta^2}\right) \right]$$

- Cf dim reg, -1 => $-\gamma_E$ + $\ln(4\pi)$
- Den reg satisfies unitarity in inf. vol. limit

Finite Size Effects on Running Coupling in Continuum Field Theory

2 => 2 at NLO in ϕ^4 in Finite System

Feynman Diagrams:

- Define $(-i\lambda)^2 iV(p^2) \equiv$
- Impose Periodic B.C.'s

$$V(p^2, \{L_i\}; \mu, \epsilon) = -\frac{1}{2} \int_0^1 dx \int \frac{dk^0}{2\pi} \sum_{\vec{k} \in \mathbb{Z}^3} \frac{1}{(2\pi)^3 L_1 L_2 L_3} \frac{\mu^{2\epsilon}}{[k^2 - \Delta^2]^{2+\epsilon}}$$

Capture the Divergence

Result is a generalized Epstein Zeta fcn

$$V(p^{2}, \{L_{i}\}; \mu, \epsilon) = -\frac{1}{2} \frac{1}{2\pi} \frac{1}{(2\pi)^{3} L_{1} L_{2} L_{3}} \frac{\sqrt{\pi} \Gamma(\frac{3}{2} + \epsilon)}{\Gamma(2 + \epsilon)} \int_{0}^{1} dx \sum_{\vec{k} \in \mathbb{Z}^{3}} \frac{\mu^{2\epsilon}}{\left(\sum_{i=1}^{3} \left(\frac{k^{i}}{L_{i}} + x p^{i}\right)^{2} + \Delta^{2}\right)^{\frac{3}{2} + \epsilon}}$$

- Poisson Summation Formula: $\sum_{\vec{n} \in \mathbb{Z}^p} f(\vec{n}) = \sum_{\vec{m} \in \mathbb{Z}^p} \tilde{F}(\vec{m})$
- Yields new analytic continuation for g.E.Z:

$$\sum_{\vec{n} \in \mathbb{Z}^p} (a_i^2 n_i^2 + b_i n_i + c - i\varepsilon)^{-s} = \frac{1}{a_1 \cdots a_p} \frac{1}{\Gamma(s)} \left[\pi^{p/2} \Gamma(s - \frac{p}{2}) \left(c - \sum \frac{b_i^2}{4a_i^2} - i\varepsilon \right)^{\frac{p}{2} - s} \right]$$

$$+ 2\pi^s \sum_{\vec{m} \in \mathbb{Z}^p} e^{-2\pi i \sum \frac{m_i b_i}{2a_i^2}} \left(\frac{c - \sum \frac{b_i^2}{4a_i^2} - i\varepsilon}{\sum \frac{m_i^2}{a_i^2}} \right)^{\frac{p}{4} - \frac{s}{2}} K_{s - \frac{p}{2}} \left(2\pi \sqrt{(c - \sum \frac{b_i^2}{4a_i^2} - i\varepsilon)} \left(\sum \frac{m_i^2}{a_i^2} \right) \right) \right]$$

Finite Size Result at NLO

Found the pole! And the F.S. correction!

$$V(p^2,\{L_i\};\mu,\epsilon) = -\frac{1}{2}\frac{1}{(4\pi)^2}\int_0^1 dx \left\{ \frac{1}{\epsilon} - 1 + \ln\frac{\mu^2}{\Delta^2} + 2\sum_{\vec{m}\in\mathbb{Z}^3}' e^{-2\pi\,i\,x\,\sum\,m_ip^iL_i} K_0\Big(2\pi|\Delta|\sqrt{\sum m_i^2L_i^2}\Big) \right\}$$

- Correction
 - goes to 0 as L_i , p => infinity
 - satisfies unitarity/optical theorem
- Optical thm check highly non-trivial
 - Requires generalization of a number theory result from Hardy/Ramanujan

s Channel (p):

$$\begin{split} p_{\text{in}}^i &= \left(\frac{n_i}{L}, 0, p_{\text{inf}}\right)^i \\ p_{\text{out}}^i &= \left(\frac{n_f}{L}, \sin(\theta) p_{\text{inf}, f}, \cos(\theta) p_{\text{inf}, f}\right)^i \\ p_{\text{inf}, f} &\equiv \sqrt{p_{\text{inf}}^2 + \frac{n_i^2 - n_f^2}{L}}, \end{split}$$

n_i is mode in finite direction

- V(p=>∞) converges to infinite volume result almost everywhere
- V(p>0) => -∞ are "geometric bound states"
 - · All outgoing momentum in the finite direction
 - Outgoing particle "gets stuck" in the geometry
- V(p=>0) IR divergence is desired finite size effect

nonosov

s Channel (L):

Inf. — 1 fin. dim

PRD 109 (2024)

15

- Similar to p dependence:
 - V(L=>∞) converges to infinite volume result almost everywhere
 - V(L>0) => -∞ are "geometric bound states"
 - All outgoing momentum in the finite direction
 - Outgoing particle "gets stuck" in the geometry
 - V(L=>0) IR divergence is desired finite size effect
- Nontrivial L => 0 dependence for n_i = 1 induced by n_i/L momentum in the finite direction

Lomonosov

t Channel (p):

- Curves end for n_i = 0 and n_f = 1 as not enough momentum in system
- Non-zero mass acts as IR regulator, so V(p=>0) is finite
- V(p=>∞) converges to infinite volume result

8/22/2025

monosov

16

t Channel (L):

- Curves end for n_i = 0 and n_f = 1 as not enough momentum in system
- V(L=>0) diverges for systems with available momenta
- V(p=>∞) converges to infinite volume result

•
$$\lambda_0 = 0.1; \lambda(p)$$

Black: Callan-Symanzik running coupling Blue: infinite volume effective coupling Red: finite-size effective coupling

WAH and Du Plessis. PRD 109 (2024)

$$\lambda_{\rm eff}$$
 1 fin. $\lambda_{\rm eff}$ 1 fin. $\lambda_{\rm eff}$ Inf. $\lambda_{\rm eff}$ Inf. $\lambda(\mu)$ dim. $\theta = \frac{\pi}{6}$ dim. $\theta = \frac{\pi}{2}$ $\theta = \frac{\pi}{6}$ $\theta = \frac{\pi}{2}$

- Running coupling captures leading log of effective coupling
- p => ∞ finite size effective coupling converges almost everywhere to infinite volume
- Notice influence of geometric bound states
 - $\lambda => 0$ at bound state poles
- p => 0 demonstrates finite size effects, where λ => 0

18

•
$$\lambda_0 = 0.1; \lambda(L)$$
:

Black: Callan-Symanzik running coupling Blue: infinite volume effective coupling Red: finite-size effective coupling

- Running coupling captures leading log of effective coupling
- L => ∞ finite size effective coupling converges almost everywhere to infinite volume
- Notice influence of geometric bound states
 - λ => 0 at bound state poles
- L => 0 demonstrates finite size effects, where λ => 0
 - Surprising, as one expects $p_{typ} \sim 1/L => \infty$ and $\lambda => \infty$ from positive beta function for ϕ^4

Lomonosov 19

Conclusions

- Small systems are a fascinating frontier in physics
- Placed massive, free scalar field in a box
 - Thermodynamics significantly altered; mimics QCD
- Introduced novel regularization scheme, den reg
 - Applicable in finite systems, curved spacetimes, thermal field theory; preserves Lorentz invariance; passes consistency checks; preserves QED Ward, SUSY? predicts axial anomaly?
- Computed NLO scattering in ϕ^4 in 1, 2, and 3 compact dim's
 - Analytic continuation of the generalized Epstein zeta function
 - Checked unitarity
 - Discovered geometric bound states
 - Captured finite size corrections
 - Computed finite size effects in effective coupling:
 - $\lambda(p=>0) => 0$, consistent with ϕ^4 beta function
 - $\lambda(L=>0) => 0$, seemingly inconsistent with ϕ^4 beta function
- A lot of interesting work to do!!

Bonus Slides

All from WAH and du Plessis, Phys.Rev.D 109 (2024) 3, 036013 [2308.08651]

Running Coupling in 1 Compact D

• $\alpha_0 = 0.3$; $\alpha(p)$

22

Running Coupling in 1 Compact D

• $\alpha_0 = 0.3$; $\alpha(L)$

s Channel (p):

s Channel (L):

25

t Channel (p):

t Channel (L):

27

• $\lambda_0 = 0.1; \lambda(p)$

• $\lambda_0 = 0.1; \lambda(L)$

• $\alpha_0 = 0.3; \alpha(p)$

• $\alpha_0 = 0.3$; $\alpha(L)$

