Search for New Physics in *CP* Violation in $b \to c\bar{c}s$ and $b \to s\bar{s}s$ Amplitudes Interference

Dmitry Gavrilov^{1,2}, Pavel Pakhlov^{1,2}, Alexander Bondar^{3,4}

¹ Higher School of Economics (HSE)

² Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS)

³ Budker Institute of Nuclear Physics (BINP)

⁴ Novosibirsk State University (NSU)

August 22, 2025 22nd Lomonosov Conference on Elementary Particle Physics

Talk plan

- ullet Sensitivity assessment of the New Physics (NP) search method in $B o\phi K_{\mathcal S}$ decay
- Development of a new method for NP search in the $B^+ o K^+ K^+ K^-$ mode, comparison of accuracy with $B o \phi K_S$
- Testing the possibility of determining the nature of direct *CP* violation in $B^+ \to K^+ K^+ K^-$ based on LHCb results

NP in $B \to \phi K_S$

- The B mesons region is very promising for NP searches
- ullet One of the most encouraging channels is a penguin-dominated $B o\phi \mathcal{K}_S$ decay (b o sar ss)
- Standard Model (SM) predicts $S = \sin 2\beta$ and A = 0 in CP asymmetry, deviations may signal about NP

$B \to \phi K_S$ decay amplitudes

Let us derive the CP violation parameters in $B o\phi K_S$

$$egin{aligned} &A(B^0 o\phi K^0)=1+\mathit{re}^{i(\delta+arphi)},\ &ar{A}(ar{B}^0 o\phiar{K}^0)=1+\mathit{re}^{i(\delta-arphi)}, \end{aligned}$$

here r — NP or SM pollution amplitude, δ, φ — relative strong and weak phases

CP violation parameters

Defining time-dependent CP asymmetry as

$$a_{\phi} \kappa_{\mathcal{S}}(t) \equiv rac{\Gamma(ar{B}^0(t)
ightarrow \phi \kappa_{\mathcal{S}}) - \Gamma(B^0(t)
ightarrow \phi \kappa_{\mathcal{S}})}{\Gamma(ar{B}^0(t)
ightarrow \phi \kappa_{\mathcal{S}}) + \Gamma(B^0(t)
ightarrow \phi \kappa_{\mathcal{S}})},$$

we obtain

$$a_{\phi K_S}(t) = S_{\phi K_S} \cdot \sin(\Delta m t) + A_{\phi K_S} \cdot \cos(\Delta m t),$$

where

$$egin{aligned} S_{\phi\mathcal{K}_{\mathcal{S}}} &\equiv \sin 2eta_{\mathrm{eff}} = \mathrm{Im}\left[-e^{-2ieta}rac{ar{A}(ar{B}^0
ightarrow \phiar{K}^0)}{A(B^0
ightarrow \phi K^0)}
ight], \ A_{\phi\mathcal{K}_{\mathcal{S}}} &= rac{|\lambda_{\phi\mathcal{K}_{\mathcal{S}}}|^2-1}{|\lambda_{\phi\mathcal{K}_{\mathcal{S}}}|^2+1}, \qquad |\lambda_{\phi\mathcal{K}_{\mathcal{S}}}| &= \left|rac{ar{A}(ar{B}^0
ightarrow \phiar{K}^0)}{A(B^0
ightarrow \phi K^0)}
ight|. \end{aligned}$$

Using decay amplitudes, we derive

$$\sin 2\beta_{\rm eff} = \frac{1 + r^2\cos 2\varphi + 2r\cos\varphi\cos\delta}{1 + r^2 + 2r\cos(\delta + \varphi)}\sin 2\beta + \frac{r^2\sin 2\varphi + 2r\sin\varphi\cos\delta}{1 + r^2 + 2r\cos(\delta + \varphi)}\cos 2\beta,$$

$$A_{\phi K_S} = \frac{2r\sin\delta\sin\varphi}{1 + r^2 + 2r\cos\delta\cos\varphi}.$$

Belle and BaBar measurements:
$$\begin{cases} \sin 2\beta_{\rm eff,\ exp} = 0.74^{+0.11}_{-0.13}, \\ A_{\phi \textit{K}_{\textit{S}},\ exp} = -0.01 \pm 0.14. \end{cases}$$

$$\frac{|\sin 2\beta_{\text{eff}} - \sin 2\beta|^2}{(\sigma_{\sin 2\beta_{\text{eff}, \exp}})^2} + \frac{|A_{\phi K_S} - 0|^2}{(\sigma_{A_{\phi K_S, \exp}})^2} < 1.65^2 \quad (1.65 \text{ for } 90\% \text{ CL})$$

(b) $\delta = \frac{\pi}{4}$

Dmitry Gavrilov

Excluded regions with any strong phase $\delta \in [0, \pi)$:

Taking into account the absence of restrictions on the strong phase of the process, the sensitivity of $B \to \phi K_S$ to NP significantly decreases

CP violation in $B^+ \to \phi K^+$

Isospin-conjugated to the $B^0 o\phi K_S$ mode, it has the same amplitudes?

We can assume that $A_{\phi K_S} = A_{\phi K^+}$

At present, A_{CP} in the $B^+ o \phi K^+$ channel has been measured only by the BaBar:

$$A_{CP}(B^+ \to \phi(1020)K^+) \equiv A_{\phi K^+, \text{ exp}} = (12.8 \pm 4.4 \pm 1.3)\%.$$

The detected direct CP violation differs from 0 by 2.8 standard deviations

It is unclear why other collaborations (Belle, Belle II, LHCb) have not made similar measurements

CP violation in $B^+ \to \phi K^+$

Let us check what accuracy we could achieve with such measurements:

$$rac{\left|A_{\phi K^+}-0
ight|^2}{\left(\sigma_{A_{\phi K^+,\;\mathrm{exp}}}
ight)^2} < 1.65^2$$

New measurements would be very useful!

NP in amplitudes interference

- ullet A new method for NP searching in $B^+ o K^+ K^+ K^-$ decay is developed
- ullet The method uses interference between penguin b o sar ss and tree b o car cs diagrams
- ullet There is the scalar resonance $\chi_{c0}(1P)$ in tree amplitude
- The process's strong phase changes near the resonance pole

$\chi_{c0}(1P)$	$I^G(J^{PC})$ = $0^+(0^{++})$
$\chi_{c0}(1P)$ MASS	$3414.71\pm\!0.30\mathrm{MeV}$
$\chi_{c0}(1P)$ WIDTH	10.5 ± 0.8 MeV (S = 1.1)

$B^+ o \chi_{c0} K^+ o K^+ K^- K^+$ amplitudes

$$B^{+} \left\{ \begin{array}{c} \overline{b} \\ u \end{array} \right\} K^{-}$$

$$B^{+} \left\{ \begin{array}{c} \overline{b} \\ u \end{array} \right\} K^{-}$$

$$B^{+} \left\{ \begin{array}{c} \overline{b} \\ u \end{array} \right\} K^{-}$$

$$B^{+} \left\{ \begin{array}{c} \overline{b} \\ u \end{array} \right\} K^{-}$$

$$A_{BW}(m_{ij}^{2}) = \frac{m_{0} \Gamma_{0}}{(m_{0}^{2} - m_{ij}^{2}) - im_{0} \Gamma_{0}}$$

$$B^+ \to K^+ K^+ K^-$$
 (Belle data)

Here is how K^+K^- invariant masses look like (140 fb $^{-1}$, Belle)

The interference pattern of the substrate and χ_{c0} resonance is clearly visible

We choose such parameters of functions for MC so that the projections are similar to this picture

August 22, 2025, 22nd LomCon

Dmitry Gavrilov

Dalitz plot (MC)

$$|A|^2(m_{13}^2,m_{23}^2) = \left|1 + re^{i(\delta \pm \varphi)} + ae^{i\delta_T} \left[A_{BW}(m_{13}^2) + A_{BW}(m_{23}^2)\right]\right|^2$$

We perform toy Monte Carlo to get data-like distributions

Generation parameters: $a=1.93 \quad (\pm 0.18)$ $\delta_{T}=1.94\pi \quad (\pm 0.06\pi)$ r=0

We extract NP amplitude r by fitting generated Dalitz plot for both B^+ and B^- at the same time

Dalitz fit projections (MC)

$$|A|^2=\left|1+r\mathrm{e}^{i(\delta\pmarphi)}+a\mathrm{e}^{i\delta_T}\left[A_{BW}(m_{13}^2)+A_{BW}(m_{23}^2)
ight]
ight|^2$$

Ensemble of fits (MC)

For many phases from $\begin{cases} \delta \in [0,\pi), & 0 \\ \varphi \in [0,2\pi), & 0 \\ \varphi \in [0$

Thus, we obtain $r_{\rm ext.\ error}=0.026$ $(\delta=\pi/4,\ \varphi=\pi/4)$

We scan 8 δ and 50 φ phases, so we perform $8 \cdot 50 \cdot 1000 = 400000$ fits

Methods comparison (CL = 90%)

We compare methods by imposing $B \to KKK$ extraction errors on $B \to \phi K$ regions

(b)
$$\delta = \frac{\pi}{4}$$

Methods comparison (CL = 90%)

(c)
$$\delta = \frac{\pi}{2}$$

(d)
$$\delta = \frac{3\pi}{4}$$

The $B \to KKK$ method has a significant advantage when $\delta \neq 0$

$b \rightarrow u$ contribution in $B^+ \rightarrow K^+K^+K^-$ decay

According to the latest measurement by the LHCb collaboration,

$$A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003$$
 (8.5 σ)

In the Standard Model there is an amplitude $b \rightarrow u$ that leads to CP violation

It is necessary to have a way to determine the nature of the CP violation

b o u contribution in $B^+ o K^+K^+K^-$ decay

Goal: extract the weak phase φ and compare it with that in SM

Consider the case where either $b \rightarrow u$ or NP is present

We perform Monte Carlo simulation for r, δ such that $A_{CP} \approx A_{CP}$ LHCb

•
$$r_{true} = 0.022$$
,

•
$$\delta_{true} = 1.375\pi$$
,

•
$$\varphi_{true} = \gamma = 0.368\pi$$
,

•
$$a_{true} = 1.930$$
,

•
$$\delta_{T, true} = 1.940\pi$$
,

•
$$r_{fit} = 0.024 \pm 0.002$$
,

$$\delta_{fit} = 1.37 \pi_{-0.04\pi}^{+0.05\pi}$$

$$\varphi_{fit} = 0.39\pi_{-0.05\pi}^{+0.09\pi}$$

•
$$a_{fit} = 1.950 \pm 0.012$$
,

•
$$\delta_{T, fit} = 1.940\pi \pm 0.004$$
.

$\delta = 9\pi/8$	$10\pi/8$	$11\pi/8$	$12\pi/8$	$13\pi/8$	$14\pi/8$	$15\pi/8$
$\varphi_{error} = 0.04\pi$	0.07π	0.05π	0.04π	0.05π	0.06π	0.03π

The accuracy is high enough for precision verification of the Standard Model

Findings

- ullet "Golden" mode $B o\phi K_S$ has a significant disadvantage
- ullet A new method for finding NP in $B^+ o K^+ K^+ K^-$ is developed
- ullet The method provides better sensitivity to NP thanks to the $\chi_{c0}(1P)$ resonance
- The new method has potential for use at LHCb