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Introduction
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
Diagrams illustrating the contribution to the inclusive probability of photon
detection in stimulated radiation by a single electron in the presence of an
external electromagnetic field.
P.O. Kazinski, T.V. Solovyev, Eur. Phys. J. C 82, 790 (2022).
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Brief summary of the work

1 In this paper, the polarization operator of a photon in the presence of
a wave packet of single electron is obtained using methods of in-in
perturbation theory.

2 Explicit solutions of the effective Maxwell equation are obtained when
the typical scale of variation of the electron wave packet in coordinate
space are much larger than the wavelength of the external field.

3 In this limit demonstrated that are exist additional degrees of freedom
stemming from the pole of the polarization operator

4 In opposite, infrared limit, it is shown that the additional degrees of
freedom are reduced to the dynamic dipole moment of the electron.
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Notation

In the interaction representation, the state of the electron at the time t = 0
is given as

|in⟩ =

√
V

(2π)3

∑
s

∫
dpφs(p)â

†
s(p)|0⟩. (1)

The normalization condition has the form∑
s

∫
dp|φs(p)|2 = 1. (2)

In in− in perturbation theory, using the Schwinger representation [1], the
interaction vertex has the form

Sint = −e
∑
a=±

a

∫
d4xψ̄aγµAaµψ

a. (3)

[1]J. Schwinger, J. Math. Phys. 2, 407 (1961).
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Polarization operator

The polarization operator is defined in a standard way

Πabµν(x, y) :=
δ2Γ̄[Aa, ψ̄a, ψa]

δAµa(x)δAνb (y)

∣∣∣
A

µ
a (x)=0,ψa(x)=ψ̄a(x)=0

, (4)

where Γ̄[Aa, ψ̄a, ψa] denotes quantum corrections to the effective action in
in-in perturbation theory.

The polarization operator is written as

Πµνab (x, y) =
0

Πµνab (x, y) +
ψ

Πµνab (x, y), (5)

where
0

Πµνab is the part of the polarization operator that is independent of the
shape of the wave packet. Further, we will call such terms vacuum.
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Polarization operator

The transition from the Schwinegr representation to the Keldysh representation
is carried out using the transformation

A±
µ = Acµ ± 1

2
Aqµ. (6)

In Keldysh’s representation, the vacuum polarization operator takes the
usual form after renormalization

0

Πµνqc (k) = (k2ηµν − kµkν)
0

Π(k2+),

0

Πµνqq (k) = −4iα

3

√
1− 4m2

k2
(
1 +

2m2

k2
)
θ(k2 − 4m2)×

×(k2ηµν − kµkν),

where
0

Π(k2) =
2α

π

∫ 1

0

dxx(1− x) ln(1− x(1− x)
k2

m2
)

(7)

L. V. Keldysh,Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].
M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley,
Reading, 1995).
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Polarization operator

The part of the polarization operator that depends on the wave packet has
the form

ψ

Πµνqc (x, y) = −e2ψ̄(x)γµS−(x, y)γ
νψ(y)

− e2ψ̄(y)γνS+(y, x)γ
µψ(x),

(8)

where

ψ(x) = ⟨0|ψ̂(x)|in⟩ =
∑
s

∫
dp

√
m

(2π)3p0
us(p)φs(p)e

−ipµxµ . (9)

To describe the mixed states of electron, it is useful to introduce a relativistic
density matrix

ψ(x)ψ̄(y) → ρ(x, y). (10)
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Effective Maxwell equations

The effective Maxwell equations in the momentum representation become

−(1−
0

Π(k′2+))(k′2ηµν − k′µk′ν)Aν(k
′)+

+

∫
d4k

(2π)4

ψ

Πµνqc (k
′, k)Aν(k) = 0.

(11)

ψ

Πµνqc (k
′, k) = −2πe2m

∑
s,s′

∫
dpcdqδ(k

′ − k − q)
ρss′(p,p

′)√
p0p′0

×

×ūs′(p′)
[γµ(p̂c + k̂c +m)γν

(pc + kc+)
2 −m2

+
γν(p̂c − k̂c +m)γµ

(pc − kc+)
2 −m2

]
us(p),

(12)

where qµ = k′µ − kµ = pµ − p′µ, pcµ := (pµ + p′µ)/2, и kcµ := (kµ + k′µ)/2.
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Short-wavelength limit

We assume that the electron wave packet is rather narrow in the momentum
space, i.e.

|q| ≪ pc0, |q| ≪ |pc0|, |q| ≪ |kc0|, |q| ≪ |kc|, (13)

where pc0 is the typical value of momenta in the wave packet
In this case, the polarization operator can be cast into the form

ψ

Πµνqc (x, kc) =
ω2
p(x)

(kcpc)2 − k4c/4

[
(kcpc)

2ηµν − (kcpc)k
(µ
c p

ν)
c +

+k2cp
µ
c p
ν
c −

imk2c
2

εµνρσkcρsσ(x,pc)
]
,

(14)

where sµ is the electron spin vector, ω2
p(x) := e2ρ(x)/m is corresponding

plasma frequency, where

ρ(x) := m

∫
dpc
p0c

ρ(x,pc). (15)
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Plasmon-polariton solutions

We will solve the equations in the electrons rest frame

pµc = (m, 0). (16)

We assume that the plasma frequency and spin are independent of the
spatial coordinates. In this case, the Maxwell equation can be written in
the momentum space as{

− k2ηµν + kµkν +
ω2
p(k)

(kp)2 − k4/4

[
(kp)2ηµν − (kp)k(µpν)+

+k2pµpν − imk2

2
εµνρσkρsσ

]}
Aν(k) = 0.

(17)
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Plasmon-polariton solutions
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The figure shows the laws of dispersion of plasmon-polariton modes for a single
unpolarized electron in the electron rest frame. The law of dispersion in vacuum
and the threshold for the formation of an electron-positron pair are also shown.
The energies of plasmon polaritons exceeding the pair formation threshold have
positive imaginary parts shown in the inset.
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Plasmon-polariton solutions
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The same as in the previous figure, but for a partially polarized electron with
a degree of polarization of ξ = 1/2 (ξ = 1 corresponds to a completely polarized
electron state). In this case, the modes are split in comparison with unpolarized
state.
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Infrared limit

Let us consider another limit for the polarization operator. We assume that
the wavelength of the external field is much larger than the typical scale of
variation of the electron wave packet in the coordinate and momentum space

|kµ| ≪ |pµ|, |qµ| ≪ |pµ|, (18)

and
ρss′(p,p

′) ≈ ρss′(pc,pc)e
−iqx0 , (19)

where x0 is the position of the center of the electron wave packet
In this approximation the polarization operator has the form

ψ

Πµνqc (k, k
′) ≈− 1

m

[
ηµν − kµpνc

(kpc)
− pµc k

′ν

(k′pc)
+

(k′k)pµc p
ν
c

(k′pc)(kpc)

]
=: − 1

m
πµν(k′, k),

(20)
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Infrared limit

The effective Maxwell equations without sources are given by

(□ηµν−∂µ∂ν)Aν(x)+
e2

m

∫
dτπµν

(
i
∂

∂x
, i
∂

∂x

∣∣∣
A

)
δ(x−x(τ))Aν(x) = 0. (21)

It is easy to verify that the action,

S[Aµ(x), dµ(τ)] := −1

4

∫
d4xFµν(x)F

µν(x)+

+

∫
dτ

[
− 1

8πr0
ḋµ⊥ηµν ḋ

ν
⊥ + ẋµFµν(x(τ))d

ν], (22)

where r0 := α/m is the classical electron radius, dµ is the dynamic dipole
moment, dµ⊥ := dµ − (ẋd)ẋµ, pµc = mẋµ, and τ is a natural parameter on the
electron worldline, reproduces effective equations (21) on excluding dµ.
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Proposal for an experiment

The scheme of the Mach—Zehnder interferometer. A solitary electron is supposed
to be placed as a sample in one of the arms of the interferometer. For this experiment,
it is necessary to calculate the phase shift of an electromagnetic wave when passing
through an electron wave packet.



16 / 16

Conclusion

1 The work shows that in coherent processes, the wave packet of one
electron carries additional degrees of freedom – plasmons.

2 There are eight plasmon-polariton modes on a single electron that are
confined to the electron wave packet.

3 In the infrared limit, these additional degrees of freedom are reduced
to the vector of the dipole moment.

See for more arХiv:2412.00750.
Phys. Rev. D 111, 036028 (2025)


