



# The RED-100 Experiment: Recent Results and Future Prospects

Aleksei Shakirov on behalf of the RED collaboration
22nd Lomonosov Conference on Elementary Particle Physics
Moscow 2025

$$\sigma \approx \frac{G_F^2}{4\pi}(N-(1-4\sin^2\theta_W)Z)^2E_\nu^2 \propto N^2$$

$$T_{max} = \frac{2E_{\nu}^2}{M + 2E_{\nu}}$$

- Largest neutrino cross-section
- Very low nuclear recoil energy, difficult to detect
- Predicted in 1974, detected in 2017 by COHERENT collaboration
- Valuable both for fundamental physics and nuclear reactors monitoring











#### **RED-100 Detector**

- Contains
  - ~200 kg LXe (~75 kg in the active volume)
  - ~100 kg LAr (~35 kg in the active volume)
- PMT Hamamatsu R11410-20
  - 19 in the top array
  - 7 in the bottom array



Geometry of the PMT array



B. A. Dolgoshein et al, JETP Lett. 11, 513 (1970)
D.Y. Akimov et al 2020 JINST 15 P02020



- Two-phase emission method
- Widely used in dark matter experiments
- Sensitive to single ionization electrons. Several SE are expected from CEvNS

- 19 m from the reactor core
- Antineutrino flux is  $\sim 1.35 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$  (thermal power of reactor is  $\sim 3.1 \text{ GW}$ )
- Reactor core, building and infrastructure work as passive shielding from cosmic muons
- ~50 m.w.e. in vertical direction
- Passive shielding contains:
  - 5 cm of copper (gamma shielding)
  - 70 cm of water (neutrons shielding)
- Timeline:
  - 2020: RED-100 was shipped to KNPP
  - 2021: Deployment and test
  - 2022: Science run (reactor OFF & ON periods)





RED 100 passive shielding:  $1 - LN_2$  tank, 2 - support frame, 3 - water tank, 4 - Cu shielding, 5 - Ti cryostat

#### **External background**

- Background was measured with:
  - RED-100 muon background
  - Nal[Tl] gamma background
  - Bicron (BC501A liquid scintillator)
     neutron background
- No significant correlation in external background count rate with reactor operation
- Muon background appears to be a source of the random SE









- Muon background appears to be a source of the random SE
- Random SE frequency at KNPP was ~30 kHz (rate of muons was ~6 Hz)
- High background is typical for weak protection from cosmic rays







LED calibration (for the SPE parametrization)
SE (single electron)
calibration (with zero hardware threshold)
Calibration with the







- Light response functions calculated from gamma signals (137Cs and 60Co) with ANTS2
- Electron extraction efficiency (EEE) was calculated to be ~ 33%





100

125

150

175

200

225

75



- Charge yield was calculated using NEST v 2.4
- Every event consists of several SEs
- SE signals were simulated using measured SE parameters and reconstructed LRFs
- SM2018 reactor spectrum was chosen for simulations





https://nest.physics.ucdavis.edu/ Phys. Rev. D 111, 072012

#### **Events selection**

#### Trigger:

- counts SPEs in individual channels in 2µs time
- vetoed on the high SPE rate
- vetoed after muons and gammas
- has livetime ~60%



- number of pulses on the wf
- energy (>4 visible ionization electrons)
- reconstructed radius (<140 mm)</li>
- duration (cut depends on energy)
- pointlike cut by two neural networks









- Constrains on the CEvNS cross-section
- Delta ON-OFF for CEvNS limit calculation
- Significant dependence of the result on neutrino spectra model
- Final limit (sensitivity) values:  $63^{+26}_{-16}$  ( $58^{+24}_{-15}$ )









#### **RED-100** with LAr

- Using LXe suffers from SE noise. It is caused by:
  - Subsurface electrons captured by potential barrier
  - Bounded states inside LXe
- LAr looks like a good substitute
  - ~10<sup>-5</sup> of created e<sup>-</sup> are delayed in LAr vs 10<sup>-3</sup> in LXe (*P. Agnes et al 2018 PRL 121 081307, E. Aprile et al 2022 PRD 106 022001*)
  - Ar has higher recoil energy and more electrons per CEvNS event
  - Ar has ~100% electron extraction efficiency at the same field as used in LXe



Electron extraction efficiency vs field for LAr and LXe

- Disadvantages:
  - <sup>39</sup>Ar isotope (~1 Bq/kg)
  - 128 nm wavelength (WLS required)
  - Longer SE duration
  - Lower temperature (-183°C)

#### Plans:

- test in the lab. with full shielding
- <sup>39</sup>Ar and <sup>85</sup>Kr level measurements
- calibration with <sup>37</sup>Ar

Significant drawback is <sup>39</sup>Ar



#### **RED-100** with LAr

New design of electrode system (to be tested soon)









new design



#### Old design

- Muon's ΔE in LAr above G2 ~ 2 MeV produces afterglow in TPB with τ ~ 1 ms
- TPB afterglow => SPE noise ~ 2 MHz which didn't allow us to set low threshold
- EL amplification is quite low: several SPE/SE (U<sub>A-G2</sub>
   ~ 11 kV)

#### New design

- ΔE from muons reduced (~1 mm against ~10 mm LAr above G2)
- U<sub>A-G2</sub> increased up to ~15 kV



PMT R11410-20



#### **Summary**

- The RED-100 experiment was successfully carried out at the industrial nuclear power plant
- It was shown that the threshold of the detector was ~4 SE
- The sensitivity to single ionization electrons was shown as 27.0 ± 0.05 SPE/SE
- Data analysis is already finished (see <u>Phys. Rev. D 111, 072012</u>)
- Sensitivity and CEvNS upper limits (90% C.L.):
  - sensitivity:  $58^{+24}_{-15}$  xSM prediction
  - limit:  $63^{+26}_{-16}$  xSM prediction
- The result is comparable to the first physical runs of other experiments (e.g. CONNIE <u>Phys. Rev. D 100, 092005</u>)
- Very high rate of pointlike background in ROI was observed
- Upgrade with LAr is ongoing

## Thank you for your attention!

### **BACKUP**

#### **Calibration**



**Figure 5**. Dependence of PSD parameter on the area of the scintillation signal for the PuBe source (left) and the background at the RED-100 location (right).