

Recent results from the vGeN experiment

D. Medvedev on behalf of vGeN collaboration

Scientific motivation

- Coherent elastic neutrino-nucleus scattering (CEvNS)
- $\sin^2 \theta_W$ at low energies
- Nuclear form factor
- Applied physics possibility: nuclear power reactor monitoring using compact Ge detectors based on CEvNS
- Neutrino electromagnetic properties
 - Magnetic moment
 - Millicharge
- New physics
 - Dark photons
 - (Pseudo)scalar dark bosons
 - Sterile neutrinos

CEvNS

Allowed by SM

«Coherent effect of a weak neutral current», D. Freedman, PRD v.9, iss.5 (1974) «Isotopic and chiral structure of neutral current», V.Kopeliovich, L. Frankfurt, ZhETF. Pis. Red., v.19 n.4 (1974)

$$\left(\frac{d\sigma}{dT}\right) = \frac{G_F^2}{4\pi} Q_W^2 M \left[1 - \frac{MT}{2E_\nu^2}\right] F^2(Q^2)$$

- No reaction threshold
- The cross-section is enhanced in comparison with other cross-sections at the same energy
- Detectors with small mass (~1 kg) can be used
- Challenges:
 - Strong source
 - Low threshold
 - Low background

Magnetic moment

SM prediction: $\mu_v \sim 10^{-19} \mu_B \times (m_v / 1 \text{eV})$

$$\frac{d\sigma}{dT} = \frac{\pi\alpha^2}{m_e^2} \left[\frac{1}{T_e} - \frac{1}{E_\nu} \right] \left(\frac{\mu_\nu}{\mu_B} \right)^2 \qquad \text{(electron)}$$

$$\frac{d\sigma}{dT} = \frac{\pi\alpha^2}{m_e^2} \left[\frac{1}{T_{nr}} - \frac{1}{E_\nu} \right] Z^2 F_Z^2 (|q|^2) \left(\frac{\mu_\nu}{\mu_B} \right)^2 \qquad \text{(nucleus)}$$

Observation of $\mu_v \sim 10^{-11}$ - $10^{-12} \mu_B$ will:

- give a hint of neutrino nature
- allow to feel the scale of Λ
- set the restrictions on the number of astrophysical models

SM+VR Mili-charged LRSM

SUSY

Spin-symm. Hor.symm.

Experiments searching for CEvNS

Ge CEvNS tension

- Dresden-II (2022): observation claim for D1/D2 QF (reactor)
- COHERENT (2024/2025): 2σ below SM prediction (accelerator)
- CONUS+ (2025): observation claim for C QF (reactor)

Experimental site

- **vGeN** is located under reactor unit #3 of KNPP (WWER-1000, thermal power 3.1 GW)
- Antineutrino flux @11.1 m is 4.4×10^{13} v/(s × cm²)
- Overburden ~ 50 m w.e.

Experimental setup

- CANBERRA (Mirion, Lingosheim) detector HPGe PPC, 1.4 kg active mass
- reset preamplifier
- low T by a cryocooler
- Multilayer passive + active shielding
- Lifting mechanism (distance from detector to the center of reactor core: from 11.1 m to 12.5m)
- pulser FWHM of 102 eV at KNPP
- Data taking via spectroscopic shaping amplifiers comparison of different preamplifier outputs with various shaping times provides noise discrimination capability

Data analysis

Since 2019 over **1500 days** (**2100 kg·d**) of statistics have been accumulated.

Data acquired from October 2022 till May 2023 @11.1 m from the center of reactor core are considered in this analysis

reactor ON – 137 days (195.5 kg·d) reactor OFF – 38 days (54.6 kg·d)

Background suppression

Applying different amplifiers with various shaping times to suppress noise events

~40% for 0.2 keV

~80% for 0.3 keV

Event rejection from preamplifier reset and from muon veto leads to dead time of ~10%

Resulting spectra

Comparison of normalized ON (195.5 kg \times d) and OFF (54.6 kg \times d) spectra

Background level comparison for different experiments

Quenching factor (QF) problem

$$QF = \frac{E_{detected}}{E_{Nuclear\ recoil}}$$

Lindhard model (used in CONUS/CONUS+) – C

Dresden-II model – D1

Dresden-II model – **D2**

Quenching models:

C, D1, D2

Results on CEvNS

Effect estimation based on ON-OFF data

2.5σ

4

3

90% CL

1σ

CEvNS amplitude, × SM

ON-OFF vs expected effect

Sensitivity and upper limits (90% CL)

QF	$A_{best} \pm \sigma_A, \times SM$	χ^2_{best} (ndf=10)	$S, \times SM$	$L, \times SM$
\mathbf{C}	1.5 ± 1.7	13.6	3.8	4.3
D1	0.1 ± 0.4	14.4	1.6	0.7
D2	0.8 ± 1.4	14.1	3.3	3.1

Upper limit (90% CL) at 4.3 times above SM (C QF)

Tension with **D1**-scenario

(preliminary results)

Results on electromagnetic properties of neutrino

Magnetic moment

Limit, $10^{-11}\mu_{\rm B}$	Experiment	Type	Comment
7.5	vGeN	reactor	ON-OFF
7.4	TEXONO	reactor	ON-OFF
5.2	CONUS	reactor	ON-OFF
2.9	GEMMA	reactor	ON-OFF
0.64	XENONnT	solar	ON only

Astrophys.: $\mu_{\nu} < 1.2 \times 10^{-12} \mu_{B}$ [F. Capozzi, 2022]

Millicharge

Limit, 10 ⁻¹² e	Experiment	Type	Comment	
2.7	GEMMA	reactor	FEA	
1.2	TEXONO	reactor	EPA	
2.4 (0.9)	vGeN	reactor	FEA (EPA)	
0.6	CONUS+	reactor	EPA	
0.224	LZ	solar	MCRRPA	

Matter neutrality: $q_{\nu}^{lim} \sim 10^{-35}$ [C. Caprini, 2003]

(preliminary results)

Future plans

Test measurements with 1 kg HPGe detector.
The effectiveness of applying NaI Compton veto

- Mounting 30 kg NaI Compton veto.
 Now tests at the Baksan underground laboratory (overburden 4800 m w.e.)
- Cryocooler modification: reduce power consumption → less vibrations → less noise.
- DAQ modification: waveform analysis

 → noise / surface events rejection (see
 poster by D. Sautner)
- The goal of all modifications:
 - reduce the background level in the ROI
 - Lower the effective threshold down to 150 – 200 eV

Conclusions

- Direct comparison of ON and OFF statistics without applying any background models/simulations has been made.
- Limit on the CEvNS count rate at $4.3 \times SM$ (C QF).
- Tension with Dresden-II (D1 QF) and vGeN result claim.
- Limits on electromagnetic properties: $\mu_{\nu} < 7.5 \times 10^{-11} \mu_{B}$, $q_{\nu} < 2.4 (0.9) \times 10^{-12} e$ for FEA (EPA) cross-section scenario.
- The upgrade is planned to be in 2026. The goal is to reduce the background level in the ROI and Lower the effective threshold down to 150 200 eV.
- More data (>2100 kg*d) are being analyzed.
- The works on background model are ongoing.
- The results are published: V. Belov et al. Chinese Phys. C 49 053004 (2025).
- The data set on KNPP is ongoing.

Latest collaboration meeting in JINR

Thank you for your attention!

Backup slides

Sensitivity estimation

«Time» corresponds to ON / OFF statistics depending on the analysis strategy.

DAQ system

Reset preamplifier is used. Typical reset frequency is 5-30 Hz. Inhibit signal is used for identification of nonphysical signals caused by reset.

Predecessor: CONUS at Brokdorf NPP, 4 HPGe, 3.7 kg tot. mass, $E_{th} \approx 210 \text{ eV}$, 2024: limit of 1.6 times above SM

CONUS+ at Leibstadt

3.6 GW reactor 7.4 mwe overburden

 $1.5 \times 10^{13} \text{ v/cm}^2\text{/s}$ at 20.7 m

Shielding:

PE (red), lead (black) and B-doped PE (white), two-layers of muon veto panels (blue)

3.7σ null rejection!

Detector	$E_{th} [eV_{ee}]$	mass (kg)	live time	signal data	prediction	ratio
$\overline{\text{C2}}$	180	0.95 ± 0.01	117.1 days	69 ± 47	96 ± 16	0.72 ± 0.50
C3	$\boxed{160}$	0.94 ± 0.01	109.9 days	186 ± 66	135 ± 23	1.38 ± 0.54
C5	170	0.94 ± 0.01	$119.5 \mathrm{days}$	117 ± 75	116 ± 20	1.01 ± 0.67
combined		2.83 ± 0.02		395 ± 106	347 ± 59	1.14 ± 0.36

Analysis approach: comparison of ON spectrum with data driven BG model.

Now new 2.4 kg HPGe, plans for a O(100 kg) HPGe array and $E_{th} \sim 100 \text{ eV}$

Comparison with DRESDEN-II

PHYSICAL REVIEW LETTERS 129, 211802 (2022)

- 1 HPGe detector, ~3 kg
- Data: 96.4 days ON, 25 days OFF
- Energy resolution >160 eV (FWHM)
- Big difference between ON and OFF
- Different shielding
- Almost no shieling against fast neutrons

Soon: full statistics of 2017-2021, ~5σ null-rejection expected

XENONnT

PHYSICAL REVIEW LETTERS 129, 161805 (2022)

- m = 5.9 ton (liquid Xe)
- ROI: 1 30 keV
- Bkg: $15.8 \ 1/(ton \times year \times keV)$
- 1.16 ton*years statistics
- $\mu_v < 6.4 \times 10^{-12} \, \mu_B$

LZ

(PHYSICAL REVIEW D 108, 072006 (2023))

- Dual phase Xe TPC
- t = 60 days
- m = 5.5 ton
- $q_v < 2.24 \times 10^{-13} e$

