

Constraints on neutrino nonstandard interactions from COHERENT, PandaX-4T and XENONnT

Gang Li

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai

GL, Chuan-Qiang Song, Feng-Jie Tang, Jiang-Hao Yu, 2409.04703 (PRD)

22nd Lomonosov Conference on Elementary Particle Physics

Moscow, August 22, 2025

Neutrino-quark interactions:

Parameterization of neutrino NSIs:

charged current:

$$\begin{split} \mathcal{L}_{\text{CC}} \supset -2\sqrt{2}G_F V_{ud}^{\text{SM}} \bigg\{ &[\mathbf{1} + \epsilon_L]_{\alpha\beta}^{ij} (\bar{u}_i \gamma^\mu P_L d_j) (\bar{\ell}_\alpha \gamma_\mu P_L \nu_\beta) + [\epsilon_R]_{\alpha\beta}^{ij} (\bar{u}_i \gamma^\mu P_R d_j) (\bar{\ell}_\alpha \gamma_\mu P_L \nu_\beta) \\ &+ \frac{1}{2} [\epsilon_S]_{\alpha\beta}^{ij} (\bar{u}_i d_j) (\bar{\ell}_\alpha P_L \nu_\beta) - \frac{1}{2} [\epsilon_P]_{\alpha\beta}^{ij} (\bar{u}_i \gamma_5 d_j) (\bar{\ell}_\alpha P_L \nu_\beta) + \frac{1}{4} [\epsilon_T]_{\alpha\beta}^{ij} (\bar{u}_i \sigma^{\mu\nu} P_L d_j) (\bar{\ell}_\alpha \sigma_{\mu\nu} P_L \nu_\beta) + \text{H.c.} \bigg\} \end{split}$$

neutral current:

$$\mathcal{L}_{\rm NC} \supset 2\sqrt{2}G_F[\epsilon_{\alpha\beta}^{fL}(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Lf) + \epsilon_{\alpha\beta}^{fR}(\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}P_Rf)] + \mathrm{H.c.}$$

matched to dimension-6 operators in the SMEFT

Yong Du, Hao-Lin Li, Jian Tang, Sampsa Vihonen, Jiang-Hao Yu 2106.15800 (PRD)

Measurements of neutrino NSIs in **oscillation** experiments:

- Neutrino charged-current NSIs affect the source (production) and detection (scattering) of neutrinos
- Neutrino neutral-current NSIs affect the propagation of neutrinos

Measurements of neutrino NSIs in scattering experiments:

 Neutrino neutral-current NSIs can also affect the detection (scattering) of neutrinos

CEvNS: what is it?

D. Z. Freedman, Phys.Rev.D 9 (1974) 1389

$$E_A = \frac{2}{3A} (E_\nu / 1 \text{ MeV})^2 \text{ keV}$$

Drukier, Stodolsky, Phys.Rev.D 30 (1984) 2295

CEvNS: physical potential

- EW precision tests: weak mixing angle, electroweak charges;
- Neutrino physics: neutrino magnetic moment, charge radius, sterile neutrinos,
- New interactions: nonstandard interactions, light mediators, generalized interactions; light dark matter;
- Nuclear Physics: neutron radius, quenching factor, reactor neutrino flux;
- Astroparticle physics: supernova, solar, atmospheric neutrinos, DSNB;...

E. Lisi, Neutrino 2018

credit: Jiajun Liao

First observation of CEvNS by COHERENT:

Csl[Na] or Csl detector

neutrinos produced in

$$\pi^+ o
u_\mu (\mu^+ o e^+
u_e ar
u_\mu)$$

Science 357 (2017) 6356, 1123

First observation of CEvNS by COHERENT:

Constraint on NSIs from COHERENT

From CEvNS events to neutrino NSIs:

Number of PEs in i-th bin

$$N_{\nu_{\alpha}}^{i} = n_{N} \sum_{x = \text{Cs,I}} \eta_{x} \langle \varepsilon_{T} \rangle_{\nu_{\alpha}} \int_{n_{\text{PE}}^{i}}^{n_{\text{PE}}^{i+1}} dn_{\text{PE}} \varepsilon(n_{\text{PE}})$$
$$\times \int_{T_{\text{nr,min}}}^{T_{\text{nr,max}}} dT_{\text{nr}} P(n_{\text{PE}}) \frac{dR_{\nu_{\alpha}}}{dT_{\text{nr}}} |_{x}$$

Differential event rate

$$\frac{\mathrm{d}R_{\nu_{\alpha}}}{\mathrm{d}T_{\mathrm{nr}}} = \int_{E_{\nu,\mathrm{min}}}^{E_{\nu,\mathrm{max}}} dE_{\nu} \Phi_{\nu_{\alpha}}(E_{\nu}) \frac{\mathrm{d}\sigma}{\mathrm{d}T_{\mathrm{nr}}}$$

total neutrino flux

number of target nuclei: n_N fraction of $\mathrm{Cs/I}$: η_x average time efficiency: $\langle \varepsilon_T \rangle_{\nu_\alpha}$ detector efficiency: $\varepsilon(n_{\mathrm{PE}})$ detector energy resolution: $P(n_{\mathrm{PE}})$

$$\Phi_{\nu_e}(E_{\nu}) = \mathcal{N} \frac{192E_{\nu}^2}{m_{\mu}^3} \left(\frac{1}{2} - \frac{E_{\nu}}{m_{\mu}} \right)$$

$$\Phi_{\bar{\nu}_{\mu}}(E_{\nu}) = \mathcal{N} \frac{64E_{\nu}^2}{m_{\mu}^3} \left(\frac{3}{4} - \frac{E_{\nu}}{m_{\mu}} \right)$$

$$\Phi_{\nu_{\mu}}(E_{\nu}) = \mathcal{N} \delta \left(E_{\nu} - \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}} \right)$$

Constraint on NSIs from COHERENT

From CEvNS events to neutrino NSIs:

$$\mathcal{L}_{ ext{NC}} \supset -2\sqrt{2}G_F \left[\epsilon^{qL}_{lphaeta} \left(ar{
u}_lpha\gamma^\mu P_L
u_eta
ight) \left(ar{q}\gamma_\mu P_Lq
ight) + \epsilon^{qR}_{lphaeta} \left(ar{
u}_lpha\gamma^\mu P_L
u_eta
ight) \left(ar{q}\gamma_\mu P_Rq
ight)
ight] ~~~ \left[\epsilon^{qV}_{lphaeta} = \epsilon^{qL}_{lphaeta} + \epsilon^{qR}_{lphaeta}
ight]$$

COHERENT, Science 357 (2017) 6356, 1123

COHERENT, 2110.07730 (PRL)

measurement by LAr detector combined result of CsI+LAr

COHERENT, 2003.10630 (PRL)

V. De Romeri, et al., 2211.11905 (JHEP)

Experimental Synergy

From neutrino measurement to dark matter detection

credit: Jiajun Liao

Experimental Synergy

Neutrino floor/frog:

Neutrino source: sun

Solar 8B neutrinos

First measurements of solar 8B neutrinos via CEvNS:

PandaX-4T, 2407.10892 (PRL)

US2 (75), pair (3.5) , background-only hypothesis is rejected with $2.64~\sigma$

XENONnT, 2408.02877 (PRL)

37 signal events, background-only hypothesis is rejected with $2.73\ \sigma$

Solar 8B neutrinos

First measurements of solar ⁸B neutrinos via CEvNS:

Number of signal events

= solar ⁸B neutrino flux \otimes CEvNS cross section

PandaX-4T, 2407.10892 (PRL)

XENONnT, 2408.02877 (PRL)

Measurements of neutrino NSIs in scattering experiments:

 Neutrino neutral-current NSIs can affect both the propagation and detection (scattering) of neutrinos

CEvNS events in PandaX-4T and XENONnT

From CEvNS events to neutrino NSIs:

Number of signal events

$$N_{
u_lpha} = n_N \int_{T_{
m nr,min}}^{T_{
m nr,\,max}} {
m d}T_{
m nr} \; arepsilon (T_{
m nr}) rac{{
m d}R_lpha}{{
m d}T_{
m nr}}$$

Differential event rate:

$$rac{\mathrm{d}R_{
u_{lpha}}}{\mathrm{d}T_{\mathrm{nr}}} = \int_{E_{
u,\mathrm{min}}}^{E_{
u,\mathrm{max}}} dE_{
u} \Phi_{
u_{lpha}}(E_{
u}) \left(rac{\mathrm{d}\sigma}{\mathrm{d}T_{\mathrm{nr}}}
ight) \qquad \Phi_{
u_{lpha}}(E_{
u}) = rac{\mathcal{E}}{M_{\mathrm{det}}} \left(P_{
u_{lpha}}
ight) \phi\left(^{8} \mathrm{~B}
ight)$$

$$irac{d}{dr}|
u
angle = \left[rac{1}{2E_
u} U H_{
m vac} U^\dagger + H_{
m mat}
ight]|
u
angle$$

$$\Phi_{
u_{lpha}}\left(E_{
u}
ight)=rac{\mathcal{E}}{M_{
m det}}\left\langle P_{
u_{lpha}}
ight
angle \phi\left(^{8}\ {
m B}
ight
angle$$

$$irac{d}{dr}|
u
angle = iggl[rac{1}{2E_
u} U H_{
m vac} U^\dagger + H_{
m mat}iggr]|
u
angle \qquad \Delta H_{
m mat} = \sqrt{2} G_F n_q egin{pmatrix} \epsilon_{ee}^{qV} & \epsilon_{e\mu}^{qV} & \epsilon_{e au}^{qV} \ \epsilon_{e\mu}^{qV*} & \epsilon_{\mu\mu}^{qV*} & \epsilon_{\mu au} \ \epsilon_{e au}^{qV*} & \epsilon_{ au au}^{qV} \end{pmatrix}$$

CEvNS events in PandaX-4T and XENONnT

From CEvNS events to neutrino NSIs:

- The neutrino NSIs have substantial impact on the solar matter effect
- The averaged probabilities vary by a factor of 2 at most for $|\epsilon_{ee}^{uV}| \leq 0.5$

see also Aristizabal Sierra, Mishra, Strigari, 2409.02003 (PRD)

The neutrino neutral-current NSIs have impact on the solar matter effects (propagation) and CEvNS cross section (scattering)

CEvNS events in PandaX-4T and XENONnT

From CEvNS events to neutrino NSIs:

The effect of NSIs on neutrino propagation is weaker than that on scattering

The cross section is approximated as quadratic polynomial of the NSI parameter

Constraint on NSIs from PandaX-4T and XENONnT

From CEvNS events to neutrino NSIs:

$$\mathcal{L}_{ ext{NC}} \supset -2\sqrt{2}G_F \left[\epsilon^{qL}_{lphaeta} \left(ar{
u}_lpha\gamma^\mu P_L
u_eta
ight) \left(ar{q}\gamma_\mu P_Lq
ight) + \epsilon^{qR}_{lphaeta} \left(ar{
u}_lpha\gamma^\mu P_L
u_eta
ight) \left(ar{q}\gamma_\mu P_Rq
ight)
ight] ~~~ \left[\epsilon^{qV}_{lphaeta} = \epsilon^{qL}_{lphaeta} + \epsilon^{qR}_{lphaeta}
ight]$$

unique probe of tau-flavor NSIs

Prospects for PandaX-4T

chi-square analysis:

$$\chi^{2} = \frac{\left[N_{\text{meas}} - N_{\text{CE}\nu\text{NS}}(1+\alpha)\right]^{2}}{\sigma_{\text{stat}}^{2}} + \left(\frac{\alpha}{\sigma_{\alpha}}\right)^{2}$$

The sensitivity to NSIs is limited by

- central value (69.1)
- statistic uncertainties (37%)
- exposure (1.04 tonne · year)
- systematic uncertainties (24.5%)

Summary

- We investigate constraints on neutrino nonstandard interactions from COHERENT, PandaX-4T and XENONnT.
- We find that the costraints from PandaX-4T and XENONnT are weaker than that from COHERENT for e- and mu-flavor NSIs.
- PandaX-4T and XENONnT provide unique probes of tau-flavor NSIs.
- In the measurements of solar ⁸B neutrinos, effect of NSIs on neutrino propagation is weaker than that on scattering.
- The sensitivity of PandaX-4T is primarily limited by the deviation of the central value from the SM prediction

Thank you