Experiments at NICA facility

V. Riabov for NICA Collaborations

Nuclotron-based Ion Collider fAcility (NICA)

♣ Heavy-ion beams, fixed-target and collider (up to Au, $\mathcal{L} = 10^{27}$ cm⁻²s⁻¹, $\sqrt{s_{NN}} = 2.4$ -11 GeV) → strongly-interacting matter at extreme conditions of maximum baryonic density

Ion sourse (KRION-6T) BM@N (Detector)
Heavy Ion Linac (HILac) MPD (Detector)
Booster

❖ Polarized beams of protons and deuterons in the collider (up to $\mathcal{L} = 10^{32}$ cm⁻²s⁻¹, $\sqrt{s_{NN}} = 12.6$ (d) 27 (p) GeV) → nucleon spin structure research and clarification of the spin origin

LU-20 Nuclotron SPD (Detector)

- NICA project is approaching its full commissioning:
 - ✓ already running in the fixed-target mode BM@N, ARIADNA
 - ✓ start of operation in collider mode in 2025 MPD and later SPD

Heavy-ion program

Heavy-ion collisions

High beam energies ($\sqrt{s_{NN}} > 100 \text{ GeV}$)

High temperature: Early Universe evolution

Low beam energies ($\sqrt{s_{NN}} \sim 10 \text{ GeV}$)

high baryon densities→ inner structure of compact stars

- \star At $\mu_B \sim 0$, smooth crossover (lattice QCD calculations + data)
- ❖ At large μ_B , 1st order phase transition → QCD critical point
- **❖** MPD @NICA → study QCD medium at extreme net baryon densities

Heavy ion experiments

BM@N: $\sqrt{s_{NN}}$ = 2.3 - 3.3 GeV MPD: $\sqrt{s_{NN}}$ = 2.4 - 11 GeV

QCD critical point: predictions/estimations

M. Hippert et al., Phys. Rev. D 110, 094006 (2024)

Method	$\mu_c \; ({ m MeV})$	$T_c \; ({ m MeV})$
Holography + Bayesian	560 - 625	101 - 108
FRG/DSE	495 - 654	108 - 119
Lee-Yang edge singularities	500 - 600	100 - 105
Lattice QCD	$\mu_c/T_c > 3$	F. Karsch et al.
Summary	495 - 654	100 - 119

BM@N:
$$\sqrt{s_{NN}}$$
= 2.3 - 3.3 GeV
MPD: $\sqrt{s_{NN}}$ = 2.4 - 11 GeV

$$(\mu_{c}, T_{c}) = (495 - 654, 100 - 119) \text{ MeV}$$
 3.5 $< \sqrt{s_{NN}} < 4.9 \text{ GeV}$

BM@N and MPD in the collision energy range of the predicted CEP location

Dense Nuclear Matter

- Neutron star mergers LIGO and Virgo Collaborations, Phys. Rev. Lett. 119 (2017) 16, 161101; Nature Phys. 15 (2019) 10, 1040-1045
 - ✓ gravitational wave detection from GW170817, confirmation by astronomical observations
 - ✓ T < 70 MeV, $\rho \sim 3\rho 0$ → about the same conditions as achieved in HIC in the laboratory
- Hyperon and hyper-nuclei measurements in HIC → hyperon–nucleon interactions (NY, YNN)
 - ✓ key to understanding the EoS at high baryon density and inner structure of neutron stars

Relativistic heavy-ion collisions provide a unique and controlled experimental way to study the properties of nuclear matter at high baryon density

Baryonic Matter @ Nuclotron

FSD, GEM, CSC, DCH: charged particle tracking + momentum measurements

TOF400, TOF700: charged particle identification by m^2/β

FQH, FHCAL: event geometry, event centrality

■ Magnet SP-41 (0) Vacuum Beam Pipe (1) BC1, VC, BC2 (2-4) SiBT, SiProf (5, 6) Triggers: BD + SiMD (7) FSD, GEM (8, 9) CSC 1x1 m² (10) ■ TOF 400 (11) DCH (12) ■ TOF 700 (13) ScWall (14) ■ FD (15) Small GEM (16) CSC 2x1.5 m² (17) Beam Profilometer (18) FQH (19) ☐ FHCal (20)

HGN (21)

Several technical runs since 2015

First physics run in 2022/2023: 124 Xe + CsI at 3 and 3.8 AGeV, > 5.5·10⁸ events Physics run in 2025 with new silicon micro-strip detectors and extended ToF-400 acceptance

V. Zharova (INR RAS) Investigation of compensation properties of the forward hadron calorimeter at the BM@N experiment

V. Volkov (INR RAS) Performance study of the scintillation wall in the first BM@N physics run

Production of π^+ and K^+ mesons in argon-nucleus interactions at 3.2 AGeV

❖ Technical run with Ar beam at 3.2 AGeV and C/Al/Cu/Sn/Pb targets

JHEP 07 (2023) 174

- The ratios of K^+ to π^+ multiplicities show no significant dependence on the mean number of participant nucleons A_{part}
- PHSD is compatible with this result, DCM-SMM and UrQMD predict a smooth rising of the ratio
- The BM@N results are in trend with the world measured data

Production of p, d, t in Ar-Nucleus interactions

Technical run with Ar beam at 3.2 AGeV and C/Al/Cu/Sn/Pb targets

https://arxiv.org/abs/2504.02759, submitted to JHEP

Blast-Wave model parametrization:

$$\textstyle \frac{1}{m_T}\frac{\text{d}^2N}{\text{d}m_T\text{d}y} = C(y)\int\limits_0^R m_T K_1\left(\frac{m_T\cosh\rho(r)}{T}\right)I_0\left(\frac{\rho_T\sinh\rho(r)}{T}\right)r\text{d}r$$

The average radial flow velocity $\langle \beta \rangle$ and source temperature T_{kin} at the kinetic freeze-out extracted from fit:

- ❖ dN/dy spectra are softer for heavier targets
- ❖ Models describe the shapes of rapidity dependences, but underestimate yields by a factor of ~5

Production of p, d, t in Ar-Nucleus interactions

Technical run with Ar beam at 3.2 AGeV and C/Al/Cu/Sn/Pb targets

https://arxiv.org/abs/2504.02759, submitted to JHEP

$$E_A \frac{\text{d}^3 N_A}{\text{d} \rho_A^3} = B_A \left(E_\rho \frac{\text{d}^3 N_\rho}{\text{d} \rho_\rho^3} \right)^Z \left(E_n \frac{\text{d}^3 N_n}{\text{d} \rho_n^3} \right)^{A-Z}$$

 B_A is the coalescence parameter that characterizes the probability of nucleons to form nucleus A

- In the coalescence models, the ratio $N_p N_t / N_d^2 \approx 0.3 (1 + \Delta n)$ is related to the neutron density fluctuation Δn irregular increase is expected near the CEP
- B_A at BM@N follow the increasing trend with the decreasing collision energy
- The estimated BM@N coalescence radius of 2.5 3 fm at $p_T = 0$ is practically independent of the target mass.

Collective flow of p and d in Xe + CsI collisions

❖ Physics run with Xe beam at 3.8 AGeV and CsI target Azimuthal angle distribution of particles w/r to event plane:

$$dN/d\varphi \sim (1 + 2v_1 \cos\varphi + 2v_2 \cos 2\varphi)$$

Preliminary results

- Slope of v_I is in good agreement with the world data
- Direct flow of p vs d: scaling with mass (predicted by coalescence model)
- Both STAR and BM@N results for directed flow prefer stiff EoS
- Analysis of charged pions and Λ hyperon flow is in progress

BM@N Reconstruction of Λ and K_s^0 in Xe + CsI collisions

❖ Physics run with Xe beam at 3.8 AGeV and CsI target

BM@N is capable of reconstruction of weak decays in high multiplicity environment

Observation of $\phi(1020)$ and hypernuclei signals in Xe + CsI collisions

❖ Physics run with Xe beam at 3.8 AGeV and CsI target

Work in progress

- Ongoing improvements:
- ✓ improve dE/dx in GEM detectors for ³He, ⁴He selection
- ✓ combined ToF-400 and ToF-700 data for K+ and K− identification
- ✓ TMVA to separate fake tracks (mostly π –)

Stay tuned for new results !!!

Multi-Purpose Detector

Stage-I → start of commissioning in 2025

Stage-II \rightarrow 2030+ ECal SC Coil CPC Tracker FHCal Yoke

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$; **TOF**, **EMC**: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ **FFD**: $|\Delta \varphi| < 2\pi$, 2.9 < $|\eta| < 3.3$; **FHCAL**: $|\Delta \varphi| < 2\pi$, 2 < $|\eta| < 5$ + ITS: $|\Delta \varphi| < 2\pi$, $|\eta| \le 3$

+ Forward Spectrometers: $|\Delta \varphi| < 2\pi$, $|\eta| \le 2.2$

Au+Au @ 11 GeV (full event simulation and reconstruction)

MPD superconducting magnet

❖ Cooling of the magnet to LN2 and Lhe temperatures

Magnet yoke and cryogenic platform

SC coil training up to 0.15-0.2 T; full-scale magnetic field measurements starting in September

Calculation and experimental current for optimal field configuration

				$\overline{}$	$\overline{}$
Current of nominal	Current in to TRIM 2,	Current in to TRIM 1,	Calc. field, Gs	Measured data	
136,74	A Itrim2	A Itrim1		Isc, A	Gs
0.2× <u>J_{sc}</u> =358	0	0	987	400	1067
	176	0	989	500	1350
	588	412	996	600	1600
0.4× <u>I_{sc}</u> =716	588	412	1986	644	1730
	940	412	1989	700	1880
	1176	824	1995	750	2210
0.6×I _{sc} =1074	1176	824	2982		
	1352	824	2984		
	1764	1236	2988		
0.8×I _{sc} =1432	1764	1236	3971		
	1940	1236	3972		
	2352	1648	3983		
1× <u>l</u> sc=1790	2352	1648	4955		
	2528	1648	4957		
	2940	2060	4964		

MPD subsystems

Support frame - READY

ECAL – 83% READY

TOF - READY

 $\begin{array}{c} ECAL \sim 38400 \ towers \ (2400 \ modules) \\ produced \ by \ Chinese \ Universities \ (SDU, THU, FDU, SCUT, \\ HZU) \ and \ JINR \ (IHEP \ (Protvino) \ and \ Tenzor \ (Dubna)) \end{array}$

40(45) half-sectors to be ready by August (December),

All 28 (100%) TOF modules are assembled, tested, stored and ready for installation. Spare modules in production

TPC - ASSEMBLY

24+ ROC ready; 100+ % FE cards manufactured TPC gas volume assembly and HV/leakage tests – ongoing TPC + ECAL cooling systems under commissioning

Forward subsystems - READY

FHCAL in the Pole (modules are equipped with FEE)

Cherenkov counters (FFD) (tests with cosmics and lasers)

MPD strategy

- ❖ High-luminosity scans in **energy** and **system size** to measure a wide variety of signals
- Scans to be carried out using the **same apparatus** with all the advantages of collider experiments
- ❖ MPD-CLD and MPD-FXT operation modes approved from start-up:

- ✓ Collider mode: two heavy-ion beams, $\sqrt{s_{NN}} = 4-11 \text{ GeV}$
- \checkmark Fixed-target mode: one beam + thin wire as a target (~ 50-100 μm):
 - \circ extends energy range to $\sqrt{s_{NN}} = 2.4-3.5$ GeV (overlap with HADES, BM@N, CBM)
 - o high event rate at lower collision energies

MPD physics program

• A comprehensive physics program: ions from **p** to **Au** and collision energies $\sqrt{s_{NN}} = 2.4-11$ GeV

G. Feofilov, P. Parfenov

Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section measurement
- Event plane measurement at all <u>rapidities</u>
- Spectator measurement

V. Kolesnikov, Xianglei Zhu

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Total particle yields and yield ratios
- Kinematic and chemical properties of the event
- · Mapping QCD Phase Diag.

K. Mikhailov, A. Taranenko

Correlations and Fluctuations

- Collective flow for hadrons
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.
- Jet-like correlations

D. Peresunko, Chi Yang

Electromagnetic probes

- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass <u>dilepton</u> spectra in-medium modification of resonances and intermediate mass region

Wangmei Zha, A. Zinchenko

Heavy flavor

- Study of open charm production
- · Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

Y.Wang (Shandong Univ.) Reconstruction of sigma-zero hyperons using simulation data from the NICA-MPD experiment D. Idrisov (INR RAS) Bayesian approach for centrality determination in nucleus-nucleus collisions at the NICA energy range

MPD feasibility studies

❖ Physics feasibility studies using large-scale Monte Carlo productions

Summary

- ❖ Heavy-ion program at NICA → study of the QCD phase diagram in the region of maximum net-baryon density
- A comprehensive physics program to be studied for different ions (from p to Au) and collision energies ($\sqrt{s_{NN}}$ from 2.4 to 11A GeV):
 - ✓ event-by-event fluctuation of multiplicity, momentum and conserved quantities
 - ✓ femtoscopic correlation
 - ✓ multiparticle correlations
 - \checkmark differential collective flow (v_n) for various hadrons
 - ✓ strange meson (including resonances) and (multi)strange hyperon production
 - ✓ light nuclei production including hypernuclei
 - ✓ (direct)photon and (di)electron probes
 - ✓ charge asymmetry
 - ✓ heavy flavor production
- * Flagship project in the world on the study of heavy-ion collisions at intermediate energies
- ❖ More information can be found at http://mpd.jinr.ru and http://mpd.jinr.ru

Program with polarized p[↑] and d [↑] beams

Spin Physics Detector

The Spin Physics Detector (SPD) at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized gluon content of proton and deuteron in polarized high-luminosity p-p and d-d collisions

Study the contribution of partons to the nucleon and deuteron spins

especially their gluon component!

Gluon TMD PDFs via asymmetries and angular modulations in the cross sections

SPD and gluon structure of nucleon

Not only J/ψ!

Physics goal	Observable	Experimental conditions	
Gluon helicity $\Delta g(x)$	A_{LL} asymmetries	p_L - p_L , $\sqrt{s} = 27 \text{ GeV}$	
Gluon Sivers PDF $f_{1T}^{\perp g}(x, k_T^2)$,	A_N asymmetries,	p_T - p , $\sqrt{s} = 27 \text{ GeV}$	
Gluon Boer-Mulders PDF $h_1^{\perp g}(x, k_T^2)$	Azimuthal asymmetries	p - p , \sqrt{s} = 27 GeV	
TMD-factorization test	Diff. cross-sections,	p_T - p , energy scan	
	A_N asymmetries		
Unpolarized gluon		d-d, p-p, p-d	
density $g(x)$ in deuteron	Differential	$\sqrt{s_{NN}} = 13.5 \text{ GeV}$	
Unpolarized gluon	cross-sections	p- p ,	
density $g(x)$ in proton		$\sqrt{s} \le 27 \text{ GeV}$	
Gluon transversity $h_1^g(x)$	Double vector/tensor asymmetries	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$	
"Tensor porlarized" PDF $C_G^T(x)$	Single vector/tensor asymmetries	d_{tensor} - d , p - d_{tensor}	

SPD setup

- Beams of protons and deuterons in the collider (up to $\mathcal{L} = 10^{32} \text{ cm}^{-2}\text{s}^{-1}, \sqrt{s_{NN}} = 13$ (dd), 19 (pd), 27 (pp) GeV)
- ❖ Beam polarization up to 70%

Free-running DAQ

Physics of the first stage

Transition scan

Non-perturbative QCD

Perturbative QCD

- ❖ Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- ***** Exclusive reactions
- Hypernucei
- ❖ Open charm and charmonia near threshold
- **❖** Auxiliary measurements for astrophysics
- ***** ...

Status summary

- **SPD physics program** is available at:
 - ✓ https://arxiv.org/abs/2011.15005
 - ✓ https://arxiv.org/abs/2102.08477
- ❖ SPD **Technical Design Report** was presented firstly in Jan 2023, then was updated in 2024 and passed international expertise this year: https://arxiv.org/abs/2404.08317
- ❖ The **first phase** of the SPD project is included into the JINR's 7-year plan (2024-2030)
- ❖ More information can be found at http://spd.jinr.ru

NICA Collaboration

Baryonic Matter at Nuclotron (BM@N):

5 стран **+ОИЯИ**, **13** центров, **> 200** участников; начаты эксперименты Analyzing Magnet тор-400 в

[®] Target

[®] Si beam tracket

Si beam profiler

FwdSi / GEM

Multi Purpose Detector (MPD):

13 стран + **ОИЯИ,** 39 центров; > 500 участников; завершается создание детектора, подготовка к набору данных

ARIADNA:

для прикладных и инновационных работ: **22** центра, > **160** участников; стартовала научная программа

BM@N

Conclusions

- ❖ NICA is a mega-science project, which approaches its full commissioning
- ❖ BM@N and MPD: heavy-ion program has been started in the fixed-target mode, startup of the collider operation is expected in late 2025
- **SPD**: spin physics program with polarized beams is advancing to start in late 20-th
- ❖ Experiments at NICA are driven by **international collaborations** → new members are needed and welcome to fulfill the comprehensive research programs

BACKUP

SPD and others

❖ The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, LHC-Spin, EIC, JLab experiments, EICc, ...)

Heavy-ion collisions with accelerators

Short heavy-ion physics history

❖ SIS100 – FAIR 2028? √s_{NN} = 5 GeV

Fixed target

CBM, HADES