Antimatter Gravitation and Fundamental Laws

Istituto Nazionale di Fisica Nucleare

Marco Giammarchi *Istituto Nazionale di Fisica Nucleare – Sezione di Milano*

- Antimatter: the Cosmic Mistery
- Fundamental Laws and Antimatter
- Gravitational Measurements

Antimatter: the Cosmic Mistery

Known fundamental particles

(and their interactions)

Cosmological ingredients

Dark Matter, Dark Energy

FERMIONS (matter particles)

BOSONS (force carriers)

Local Control

Local Contro

Fundamental (2023) Physics and the Universe

Not fully confirmed Λ-CDM Model

- Standard Model Quantum Physics
- Friedmann Models (General Relativity)
- Inflation (new Physics)

Note: a question mark!

How do the early structures seen by J Webb and ALMA fit into the picture?

Matter-Antimatter Asymmetry Generation

Generally accepted Baryogenesis scheme

- Baryon Number Violation
- CP Violation
- Out of Equilibrium

Sakharov conditions

CP Violation in the Standard Model

- Baryogenesis
- Leptogenesis

Insufficient to explain the asymmetry → CPT violation?

- Unbalance created within the first 10⁻¹² s of Universal Time
- One part out of 10¹⁰
- The subsequent annihilation generated a matter-only Universe

Fundamental Laws and Antimatter

Laws relating Particles (Matter) to Antiparticles (Antimatter)

In a classical theory of Gravitation

Einstein Equivalence Principle (EEP)

CPT Theorem

- Weak Equivalence Principle
- Local Position Invariance
- Strong Equivalence Principle
- Lorentz-invariant QFT
- Flat spacetime

Only a Quantum meaning

Quantity	Expression	Metric value	Name
Length (L)	$l_{ m P} = \sqrt{rac{\hbar G}{c^3}}$	1.616×10 ⁻³⁵ m	Planck length
Mass (M)	$m_{ m P} = \sqrt{rac{\hbar c}{G}}$	2.176×10 ⁻⁸ kg	Planck mass
Time (T)	$t_{ m P} = \sqrt{rac{\hbar G}{c^5}}$	5.391×10 ⁻⁴⁴ s	Planck time
Temperature (Θ)	$T_{ m P} = \sqrt{rac{\hbar c^5}{G k_{ m B}{}^2}}$	1.417×10 ³² K	Planck temperature

Particles and Antiparticles

Dynamical meaning

$$F = m_I a$$

The gravitational «charge»

$$F = -G m_G M_G / r^2$$

According to the WEP

$$m_I = m_G$$

CPT Theorem

Which means that

$$m_G \neq \overline{m}_G$$

Would not necessarily mean that CPT is broken

 $m_G \neq \overline{m}_G$ Means that either CPT or the WEP are broken at the particle level

Theoretical framework: Standard Model Extension : D. Colladay, V. Kostelecký, Phys Rev D **55** (1997) 6760

Fundamental (2025) Physics

Curvature scalar R

Metrics g(x)

(Classical Matter Fields)

General Relativity Standard Model

Quark, Lepton fields
Gauge Bosons Fields
Higgs Field
(in a fixed g = η)

Hierarchy Problem

Cosmological Constant Problem

Lack of SUSY (DM?) Particles

Standard Model Extension

$$\mathcal{L} = \mathcal{L}_{EH} + \mathcal{L}_{SM} + \mathcal{L}_{LIV}$$

Main mechanism: Lorentz Invariance Violation (LIV) → CPT and GR Violation

Is Lorentz Invariance Violation reasonable? → Yes, based on general properties of Planck scale How? → Typically by means of static background fields due to the presence of a non-trivial vacuum state

LIV →Spacetime operators (parametrized as a power of the mass)

$$\mathcal{L} = \mathcal{L}_{EH} + \mathcal{L}_{SM} + \mathcal{L}_{LIV}$$

LIV terms up to some mass dimension
If d<5 → mSME

A fermion in the (flat spacetime) SME:

CPT & LORENTZ
VIOLATION

$$(i\gamma^{\mu}D_{\mu} - m_{e} - a_{\mu}^{e}\gamma^{\mu} - b_{\mu}^{e}\gamma_{5}\gamma^{\mu})$$
 $- \frac{1}{2}H_{\mu\nu}^{e}\sigma^{\mu\nu} + ic_{\mu\nu}^{e}\gamma^{\mu}D^{\nu} + id_{\mu\nu}^{e}\gamma_{5}\gamma^{\mu}D^{\nu})\psi =$

Standard Model + LIV, no gravity, a fermion

D. Colladay and V.A. Kostelecky, PRD 55, 6760 (1997)

LORENTZ VIOLATION

LIV coefficients depend on the specific particle!

Gravitating Matter/Antimatter Systems in the Standard Model Extension

V.A. Kostelecký and A. Vargas, Phys. Rev. D 92 (2015) 056002

$$m_{i}^{B} = m^{B} + \sum_{w} \frac{5}{3} (N^{w} + N^{\overline{w}}) m^{w} c^{w}$$

$$m_{g}^{B} = m^{B} + \sum_{w} \left[(N^{w} + N^{\overline{w}}) m^{w} c^{w} + 2\alpha (N^{w} + N^{\overline{w}}) a^{w} \right]$$

$$\alpha = \frac{1}{3} m^{w} c^{w}$$

$$m_{i} = m_{g} \quad (matter)$$

Anti-Hydrogen

$$\left| \frac{\delta g}{g} = \frac{2}{m} \sum_{w} \left(\alpha a^{w} + \frac{1}{3} m^{w} c^{w} \right) \right|$$

Sentitive to six parameter

Positronium

$$\frac{\delta g}{g} = \frac{8}{3}c^e$$

Sentitive to one parameter

Gravitational Measurements

Tests of the Einstein Equivalence Principle

Antimatter?

Muonium (Mu-atom, please)

Anti-Hydrogen first measurement

Nature 621 (2023) 716

Observation of the effect of gravity
on the motion of antimatter
ALPHA Collaboration

Escape curve from the ALPHA-g magnetic system compared to simulations

 $(0.75 \pm 0.13 \text{ (statistical + systematic)} \pm 0.16 \text{ (simulation)}) g$

Compatible with g

Positronium

Why Positronium (as complementary to anti-H)?

- Anti-H is not an elementary particle (not even the antiproton is)
- Ps is made of two fundamental fermions, directly appearing in the Standard Model Lagrangian
- Most of the mass of the antiproton is not "constituent mass"

$$m(\bar{p}) = m(quarks) + m(colorfield)$$

 $\cong 15 MeV + m(colorfield)$

QUPLAS: Positron Interferometry and Positronium Gravitation (in construction)

A conclusion

Research on Antimatter Graviataion at Low Energy:

- Deals with Fundamental Laws
- Studies the interplay between Quantum Physics and Gravitation
- Could (help to) solve a Cosmic Mistery...and...
- Anti-hydrogen first measurement!

"Nature is in some sense, the Gospel and preach loudly creative power, wisdom and greatness of God."

Mikhail Vasilevich Lomonosov

A conclusion

Research on Antimatter Graviataion at Low Energy:

- Deals with Fundamental Laws
- Studies the interplay between Quantum Physics and Gravitation
- Could (help to) solve a Cosmic Mistery...and...
- Anti-hydrogen first measurement!

"Nature is in some sense, the Gospel and preach loudly creative power, wisdom and greatness of God."

Mikhail Vasilevich Lomonosov

Спасибо за внимание!