Cosmic Ray Proton Spectrum by LHAASO

Zhen Cao (on behalf of LHAASO Coll.)

The Site

Bird's eye view of LHAASO, 2021-08

- Location: 29021' 27.6" N, 100008'19.6" E
- Altitude: 4410 m
- 2021-07 completed built and in operation

LHAASO, Nature Astronomy 5:849 (2021)

(Aug. 2018, at 4410 m a.s.l.)

LHAASO: Multi-Messenger Collaboration Network

The LHAASO collaboration has signed MOUs with 8 international collaborations

High Energy Cosmic Rays

Large High Altitude Air Shower Observatory (LHAASO)

CATCHING RAYS

China's new observatory will intercept ultra-high-energy γ-ray particles and cosmic rays.

~25,000 m -

- **LHAASO Physics Topics**
- Gamma Ray Astronomy
- Charged CRs measurement
- New Physics Frontier

18 wide-field-of-view air Cherenkov telescopes

5,195 scintillator detectors

78,000-m² surfacewater Cherenkov detector

1188 underground water Cherenkov tanks

(muon detectors)

WFCTA

Hybrid Detection of EAS

4,410 m

Cosmic rays

- Proton, helium nuclei and heavier nuclei, all the way to uranium
- ➤ Discovered in 1912, many things (e.g. source, acceleration mechanism) about cosmic rays remain a mystery more than a century later
- ➤ Individual energy spectra play am important role to solve the mystery
 - Proton knee, helium knee, iron knee ...
 - Knees may indicate the energy limit for cosmic ray acceleration by astrophysical sources

PDG 2025,

The Proton

Spectrum around the knee

- Energy is too high to be detected in direct measurement
- KASCADE gives confusing results due to the large uncertainty
- IceCube has too high threshold

Hybrid Detection of EAS

LHAASO, Daocheng, China

- at 4410 m above sea level
- Construction finished in 2021
- Operation for 4 years
- Discovery of many PeVatrons and the brightest GRBs

Hybrid Detection of EAS

KM2A: 1.36 (km)²

- > 5195 EDs
 - 1 m² each
 - 15 m spacing
- > 1188 MDs
 - 36 m² each
 - 30 m spacing

Inner View of one ED

Wide Field of View Cherenkov Telescope (WFCTA)

◆ Telescope parameters:

• ~5 m² spherical mirror

• Camera: 32×32 SiPMs array

• FOV: $16^{\circ} \times 16^{\circ}$

• Pixel size: 0.5°

◆ 18 tels are pointed at a zenith angle of 45° cover azimuth angle from 0° to 360°

Mirror

SiPM and Winstone cone

Hybrid Measurement of CR Showers around the Knee

KM2A:

- 1. Core (x,y)
 - $\sqrt{x^2 + y^2} < 470 \, m$
 - !|x'|<200m & !|x'|<160m
- 2. Number of fired EDs > 20

WFCTA: Cherenkov telescopes

- 1. Number of pixels: $N_{pixel} \ge 6$
- 2. FoV: $10^{\circ} \times 10^{\circ}$ out of $16^{\circ} \times 16^{\circ}$
- 3. R_p : 180 310 m

— Core resolution 2.5 m

— Angular resolution $0.1\,^\circ$

Component sensitive parameters: $P_{\theta c}$

$$\theta_c^{250} = \frac{\theta_c}{\cos(\theta)} + 0.011 \times (R_p - 250)^{\frac{2}{1.5}}$$

Normalization in energy:

$$\langle \theta_c^{250} \rangle = p_0 + p_1 \cdot \log_{10} E + p_2 \cdot \log_{10}^2 E$$

• $\langle \theta_c^{250} \rangle |_{PeV}$: the average value of θ_c for proton events at $R_p = 250$ m and E=1 PeV

Component sensitive parameters: P_{ue}

Muons and electromagnetic particles in EAS

$$N_{\mu} \propto A^{1-\beta} \left(\frac{E_0}{1 \text{ PeV}}\right)^{\beta} \approx 1.69 \times 10^4 \cdot A^{0.10} \left(\frac{E_0}{1 \text{ PeV}}\right)^{0.90}$$

$$N_e \propto A^{1-\alpha} \left(\frac{E_0}{1 \text{ PeV}}\right)^{\alpha} \approx 5.95 \times 10^5 \cdot A^{-0.046} \left(\frac{E_0}{1 \text{ PeV}}\right)^{1.046}$$

J. R. Hörandel, Cosmic rays from the knee to the second knee: 10^{14} to 10^{18} eV, Mod. Phys. Lett. A 22, 1533 (2007)

$$P_{\mu e} = \log_{10} \frac{N_{\mu}}{N_e^{0.82}}$$

- N_{μ} : 40~200 m N_{e} : 40~200 m

Effective Area and Efficiency, and Data Set

- > Data set: 2021.10-2022.4
- ➤ Total time after good weather selection: ~1,000 hour
- >Aperture: ~70,000 m²sr
- ➤ The proton energy spectra from 0.158 to 12.5 PeV
- >Fully efficient detection

Proton Selection: multi-parameter analysis

$$P_{\theta c + \mu e} = -\sin(\delta) \cdot P_{\theta c} + \cos(\delta) \cdot P_{\mu e} \quad (\delta = 8.5^{\circ})$$

- > Purity ($\epsilon^l = \frac{N_{select}^L}{N_{select}^L + N_{select}^H}$): ~90% @ 1PeV
 - Most of the contaminations come from Helium
- > Selection efficiency ($\eta^l = \frac{N_{select}^L}{N_{gll}^L}$): 25%.

Simulation vs. Data

- EPOS-LHC: P-distributions for species
- Normalizing the proton distribution below -0.3
- Assuming p/He ratio following GSF model, normalizing the distribution below -0.05
- Matching the heavier species at large values: bin by bin, agree with each other in $\pm 2\sigma$

Energy Reconstruction

- \triangleright Shower energy: $E_0 \sim E_{em} + E_h$
 - Electromagnetic component (E_{em}): Cherenkov photons (N_{ph}) or electrons + gamma rays (N_e)
 - Hadronic component(E_h): $\pi^{\pm} \rightarrow \mu$ (N_{μ})

$$N_{c\mu} = N_{ph} + CN_{\mu}$$

 $E_{rec} = kN_{c\mu}$

Energy Resolution: <15%</p>

• Systematic Bias: <2%

Contamination from Helium Nuclei

Ratio of proton vs Helium nuclei in composition assumptions

Re-produced pure-proton spectra under 4 assumption of composition mixtures

➤ The discrepancies between the expected spectra and reconstructed results of different component models: 3-5% for energies below 1 PeV, about 7% for 3 PeV and ~15% for 10 PeV.

Eq. 3:
$$F(E) = F_0 \left(\frac{E}{100 TeV}\right)^{\gamma_1} \left(1 + \left(\frac{E}{E_h}\right)^{1/w_1}\right)^{(\gamma_2 - \gamma_1)w_1} \left(1 + \left(\frac{E}{E_k}\right)^{1/w_2}\right)^{(\gamma_3 - \gamma_2)w_2}$$

Eq. 4:
$$F(E) = F_0 \left(\frac{E}{100 TeV}\right)^{\gamma_1} \left(1 + \left(\frac{E}{E_h}\right)^{1/w}\right)^{(\gamma_2 - \gamma_1)w} e^{-\frac{E}{E_{cut}}}$$

Fq. 3: Three broken power laws $E_h = 365 \pm 20$ $E_k = 3.2 \pm 0.3$ $\gamma 1 = -2.67 \pm 0.01$ $\gamma 2 = -2.51 \pm 0.02$ $\gamma 3 = -3.5 \pm 0.1$ $\chi^2/\text{n.d.f.} = 9.9/11$

Eq. 4: Two broken power law+ an exponential cutoff

$$E_h$$
 = 436 ± 22
 E_{cut} = 5.1 ± 0.3
 γ 1 = -2.66 ± 0.02
 γ 2 = -2.29 ± 0.05
 χ 2/n.d.f. = 27.1/13

Systematic Uncertainties

Systematic uncertainties on flux		
Hadronic model	≤ 15%	
Composition model	~7%@3PeV	
Different purity	≤ 2 %	
SiPM camera calibration	≤ 2 %	
Background light	≤ 2%	
Absolute Humidity	≤ 1%	
Air pressure	≤ 1%	
Total	~17 %	

Systematic uncertainties on Energy Scale	
SiPM camera calibration	~1.5%
Mirror reflectivity Calibration	~1%
Nμ Calibration	~1%
Absolute Humidity (water vapor)	~1%
Aerosol	~2%
Air pressure	~0.5%
Hadronic model	~1.4%
Total	~4%

Proton energy spectrum measured by LHAASO in the knee region

- > CR protons around the knee have been identified from 0.15 to 12 PeV by LHAASO.
 - LHAASO purity: ~90%, above 100TeV
 - Direct measurement (e.g. DAMPE)
 purity: 99% 95%, below 100TeV
 - KASCADE and ICETOP: Unfolding method, no purity provided.
- ightharpoonup Hardening: >300 TeV, with index change $\Delta\gamma$ =~0.4 respect to the space-borne measurement
- > Softening (knee): ~3.3 PeV, with index change $\Delta \gamma = -1$

LHAASO Coll., arXiv:2505.14447

Compatible precision with the space borne direct measurement!

Proton knee vs. all particle knee

LHAASO Collaboration, PRL, 132, 131002 (2024)

All particle energy spectrum: see Hengying Zhang talk for more details.

Knee: $\sim 3.67 \text{ PeV}$ $\gamma 1 = -2.74 \pm 0.005$ $\gamma 2 = -3.13 \pm 0.005$

> Knee: ~3.3 PeV $\gamma 1 = -2.71 \pm 0.02$ $\gamma 2 = -2.51 \pm 0.03$ $\gamma 3 = -3.5 \pm 0.2$

The all-particle knee is likely dominated by the proton knee

Protons dominating the Knee over other species

Wideband spectrum of protons

➤ A potential explanation could be the existence of multiple groups of cosmic ray sources with varying acceleration limits, as indicated by their maximal cosmic ray energies.

LHAASO Coll., arXiv:2505.14447

Black Holes and Jets: µQs

- Very important !!
- New CR source population particularly at energy E >3 PeV

Black Hole as a super-PeVatron?

Very difficult to detect: not only due to the distant: ~20,000 light-year! But also out of main field of view of LHAASO: a source in southern hemisphere Powerful accelerator generating particle at E >10 PeV!!

Testing on Hadronic Interaction Models

Disentangle from the composition assumption

QGSJet seems systematically shifted over 5σ

Light component (H+He) Selection

- > Helium showers are very similar with proton showers
- > it is impossible to separate helium from all other particles event by event
- > Methodology:
 - Helium spectrum = F_{P+He} F_{proton}
 - The same dataset and the same energy reconstruction as used in the proton energy spectrum
- ➤ High efficiency in selection for light showers

Light component (H+He) Selection

- > Dual cutting is applied to keep the same ratio of Proton and Helium before and after the composition selection;
- > Purity ($\epsilon^l = \frac{N_{select}^L}{N_{select}^L + N_{select}^H}$): ~90% @ 1PeV,

 Most of the contaminations come from CNO
- > Selection efficiency ($\eta^l = \frac{N_{select}^L}{N_{all}^L}$): 60%.

Conclusion

- > LHAASO measures showers at 4410m above sea level
- Multi shower parameters are well measured with a full containing both longitudinally and laterally
- ➤ Enable separation of proton showers from other species event by event, with a purity of ~90%
- ➤ Hardening and Knee features is revealed with sufficiently small uncertainties
- > The knee is dominated by protons
- ➤ Three components in the wideband proton spectrum indicate different source population groups
- > Stay tuned, the Helium spectrum coming soon