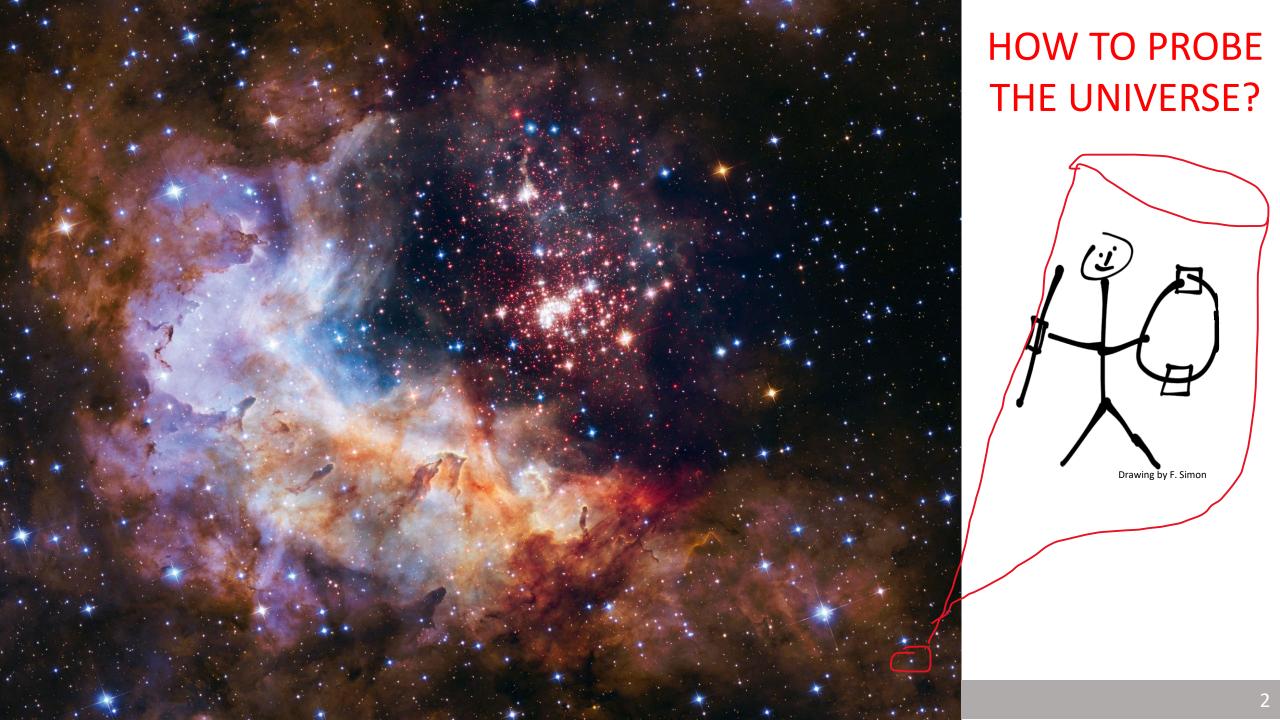


A Linear Collider Vision (for the Future of Particle Physics)

Ivanka Bozovic

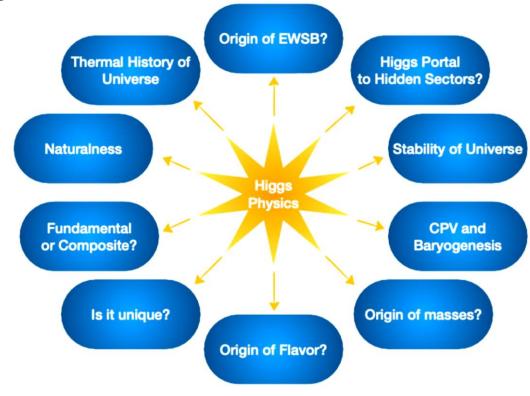
VINCA Institute of Nuclear Sciences, University of Belgrade



[The talk is based on comprehensive reports and publications of the LC Vison Team

10 pages project document arXiv:2503.24049 long document (>100 pages): arXiv:2503.19983

and recent presentations by J. List and G. Moortgat Pick



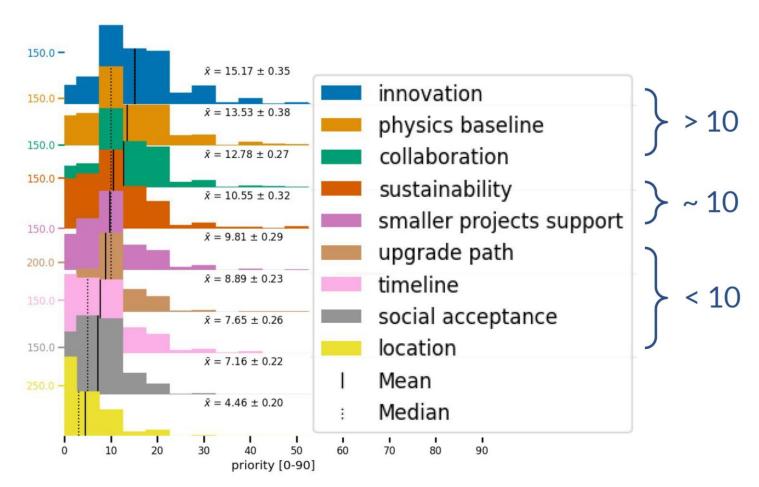
THE PROBLEM

- WE DO NOT UNDERSTAND THE UNIVERSE
 - O What is it (the fabric of space-time)?
 - Evolution of the Universe (macroscopic Universe, dark energy,...)
 - Composition of the Universe (baryon asymmetry, Higgs vacuum,...)
- WE ARE TRYING TO EXPLOIT WHAT WE KNOW (CAN DO)
 - Collide particles (since the Rutherford experiment)

HIGGS BOSON AS A PORTAL TO NEW PHYSICS

- The only discovered (fundamental) scalar with not yet fully understood properties
- Opened new questions in SM (mass stabilization hierarchy problem)
- Tight yet unknown connections to the Universe (vev *EW baryogenesis*, vacuum stability, cosmological inflation, CPV)
- Directly coupled to massive particles (SM or BSM, DM)
 ⇒ portal to unknown sectors
- Sensitive to BSM realizations ⇒ indirect probe of New Physics ⇒ roadmap for HEP

- European Strategy for Particle Physics Update (ESPPU) 2020 clearly prioritized Higgs factories
- \circ Is this going to be revised in ESPPU 2025? Do we prefer Z^0 pole? TeV parton (lepton) energies?
- Is the Higgs potential still the 'Holly Grail' of Particle Physics?

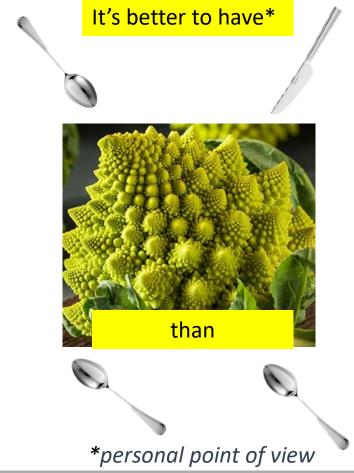

- o Will China go with the CEPC?
- o If yes, should we (Europe) duplicate the machine?
- O Go directly to pp collisions?
- o Go for a linear collider?
- o Have projects in the LHC tunnel?
- O Go straight to muon collider?

C. Dimitriadi, U. Einhaus, ECR Perspectives, ECFA Venice, 2025

Statement: The main collider proposals (...) have received recognition from the ECR community. A relative majority prefers a circular e⁺e⁻ collider, closely followed by the option "I do not know/I do not have a strong opinion".


I. Bozovic

SOME GUIDELINES FROM THE (ECR) COMMUNITY



- Physics and innovative technologies are more important than others
- The flagship project should not kill other smaller project (keep diversity)
- Location seems to be of the least importance

C. Dimitriadi, U. Einhaus, ECR Perspectives, ECFA Venice, 2025

- o Will China go with the CEPC?
- o If yes, should we (Europe) duplicate the (ee) machine?
- o Go directly to pp collisions?
- o Go for a linear collider?
- o Have projects in the LHC tunnel?
- O Go straight to muon collider?

- O Will China go with the CEPC?
- o If yes, should we (Europe) duplicate the (ee) machine?
- o Go directly to pp collisions?
- O Go for a linear collider?
- o Have a project in the LHC tunnel?
- o Go straight to muon collider?

PRO:

- physics potential
- innovative technologies
- can accommodate several experiments

CONTRA:

- cost* (compromise projects diversity)
- time-scale**

cost (pp)*: 19 B\$ (following FCCee), 27 B\$ stand-alone

*AI generated information

time-scale**: 2074 (following FCCee), 2055 stand-alone **G. Arduini - WG2a report: Project comparison (status), ECFA Venice, 2025

- O Will China go with the CEPC?
- o If yes, should we (Europe) duplicate the (ee) machine?
- o Go directly to pp collisions?
- o Go for a linear collider?
- o Have a project in the LHC tunnel?
- o Go straight to muon collider?

PRO:

- existing infrastructure
- time-scale

CONTRA*:

- limited physics potential (i.e. LEP3: 230 GeV, 6-10 times lower £ than FCCee)
- limited upgrade possibilities
- reducing funding for 'a flagship project' – can not be perceived as intermediate projects

*G. Arduini - WG2a report: Project comparison (status), ECFA Venice, 2025

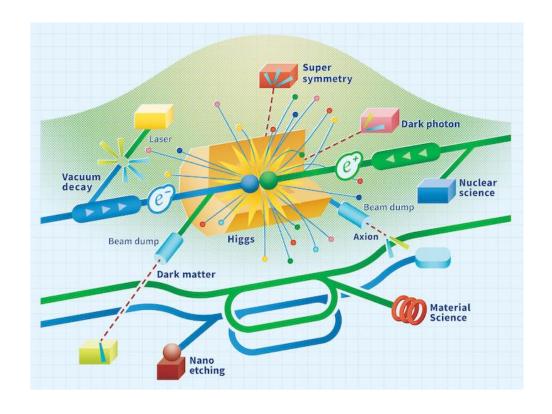
- o Will China go with the CEPC?
- o If yes, should we (Europe) duplicate the (ee) machine?
- o Go directly to pp collisions?
- o Go for a linear collider?
- o Have a project in the LHC tunnel?
- o Go straight to muon collider?

PRO:

- physics potential
- innovative technologies

CONTRA*:

- time scale due to needed R&D time
- feasibility (beam stabilization, v flux, high-B magnets)


*G. Arduini - WG2a report: Project comparison (status), ECFA Venice, 2025

GO FOR A LINEAR COLLIDER?

Mature e+e- collider designs at 250 GeV, 350 GeV, 550 GeV and beyond TeV options

PRO:

- proven technology (European XFEL)
- immediately available
- less expensive* (FCCee + FCChh ~ 34B\$)
- upgradable (also in technology: SCRF, ERL, plasma wakefield)
- auxiliary experiments (beam-dump, fix target)
- beam polarization (effectively increases \mathcal{L} , background reduction, model discrimination)

cost: 17 B\$ (550 GeV, 2 IP @CERN)*, + 7 B\$ for 1 TeV**

*S. Stapnes, A Linear Collider at CERN, ECFA Venice, 2025 ** AI generated information

250 GeV, ~2ab-1:

precision Higgs mass and total ZH cross-section Higgs -> invisible (Dark Sector portal)

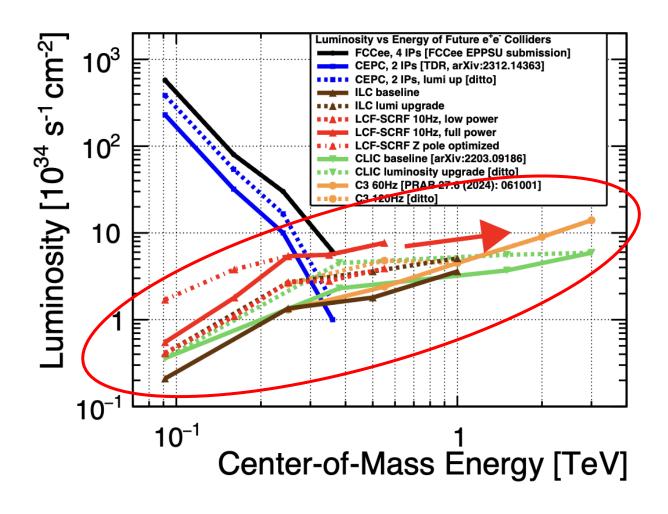
basic ffbar and WW program

optional: WW threshold scan

Z pole, few billion Z's: EWPOs 10-100x better than today

350 GeV, 200 fb-1:

precision top mass from threshold scan

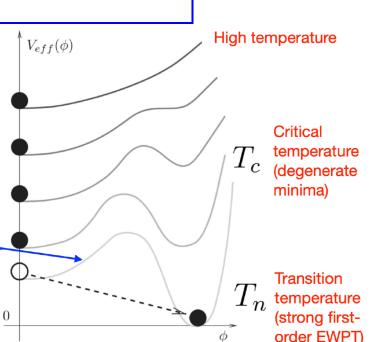

500...600 GeV, 4 ab-1:

Higgs self-coupling in ZHH with ~10% precision on λ/λ top quark EW couplings top Yukawa coupling incl CP structure improved Higgs, WW and ffbar probe Higgsinos up to ~300 GeV probe Heavy Neutral Leptons up to ~600 GeV

800...1000 GeV, 8 ab-1:

Higgs self-coupling in VBF further improvements in tt, ff, WW, probe Higgsinos up to ~500 GeV probe Heavy Neutral Leptons up to ~1000 GeV direct BSM searches

LCF PHYSICS REACH

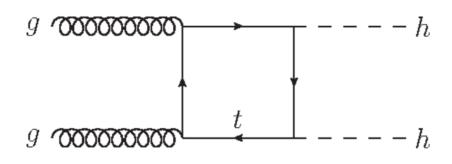

WHAT IS THE UNDERLYING DYNAMICS OF EW SYMMETRY BREAKING?

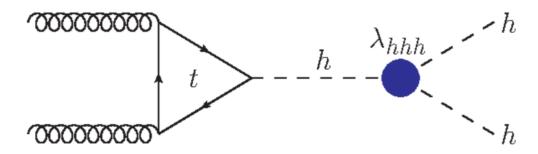
 \circ Why the Higgs field developed vacuum expectation value (μ^2 <0)?

- Extended Higgs sector = new symmetry
- Composite Higgs = new interaction
- \circ Which form of the Higgs potential is realized in nature (is $\lambda = \lambda_{SM}$)?

Trilinear Higgs coupling is crucial for understanding of the Higgs potential and its cosmological implications

- EW baryogenesis requires strong firstorder phase transition
- o $\lambda = \lambda_{SM}$ is a typical feature of the first order EWPT

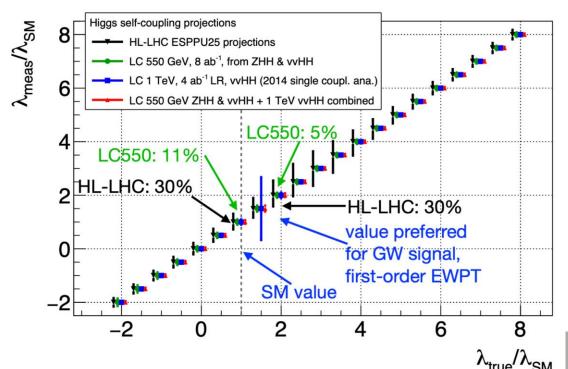

I. Bozovic 22st Lomonosov Conf


Higgs potential

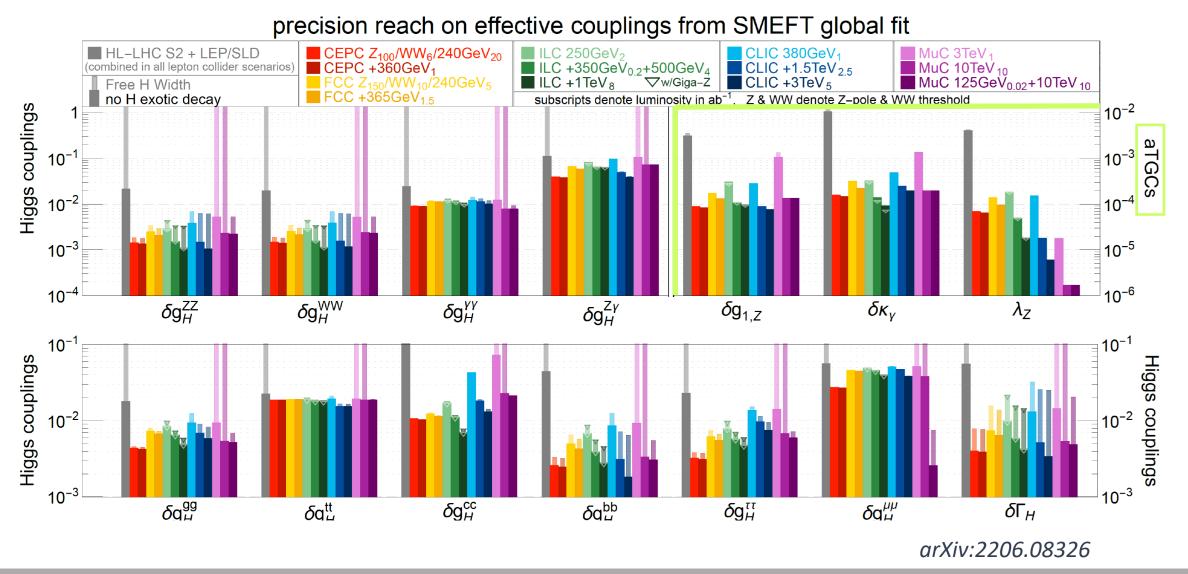
 $V(\phi)$

THE BEST WAY TO PROBE IT ARE l^+l^- COLLISION AT HIGH ENERGIES

Double-Higgs production $\rightarrow \lambda_{hhh}$ enters at LO \rightarrow most direct probe of λ_{hhh}


Destructive interference at hadron colliders depends critically on $\lambda/\lambda_{\text{SM}}$

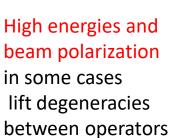
Present LHC bound -1.4< λ/λ_{SM} <7.0 at 95% CL

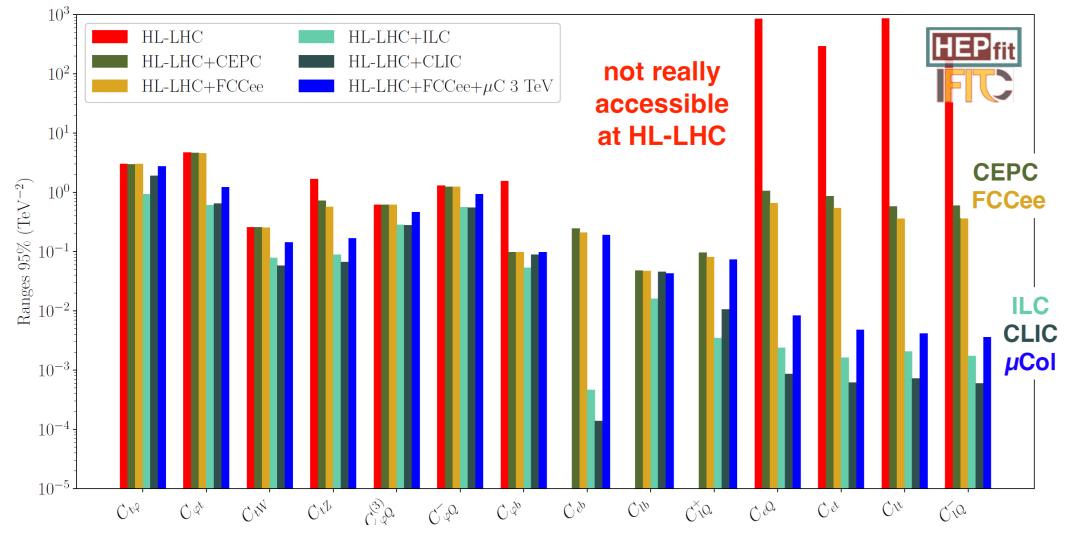

High energy (> 500 GeV) linear collider is the fastest way to reach % level precision on the Higgs potential

(at FCC/ee+eh+hh/~2080s)*

*E. Laenen, Outstanding questions in PP, ECFA Venice, 2025

LC CAN DELIVER BASIC HIGGS MEASUREMENTS ON EQUAL FOOTING WITH OTHER e⁺e⁻ COLLIDERS

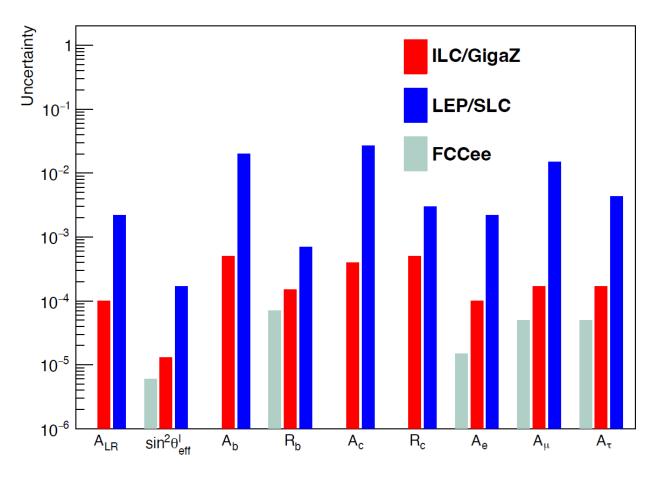



I. Bozovic

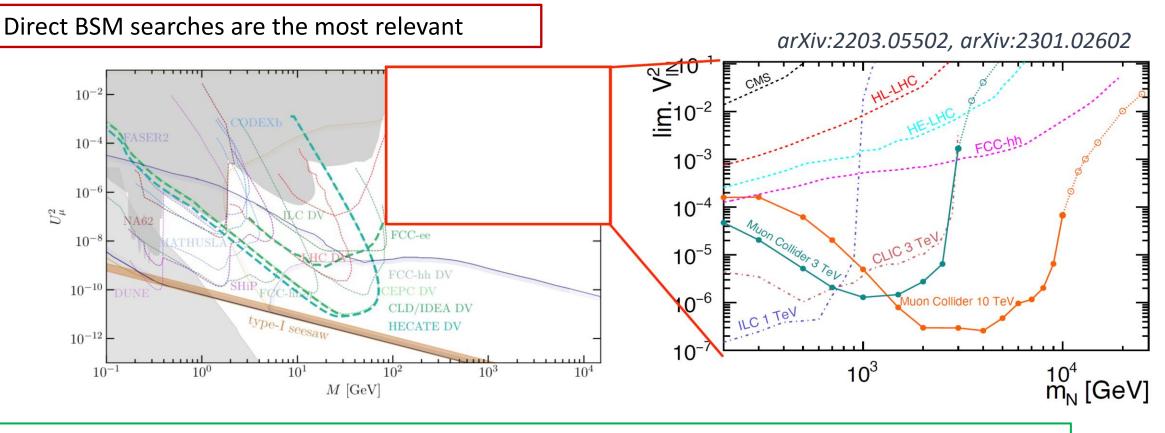
ADDED VALUE TO HL-LHC IN THE TOP SECTOR

SMEFT analysis + 1TeV ILC

based on arXiv:2205.02140



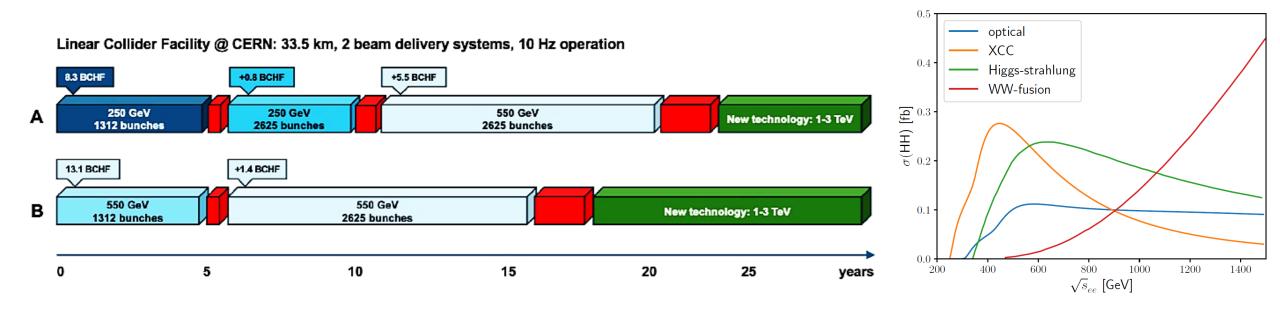
LET'S DISCUSS SOME CRITICISM (TO THE LC PHYSICS PROGRAM)


arXiv:1908.11299

Z⁰ pole is more important (than thought initially)

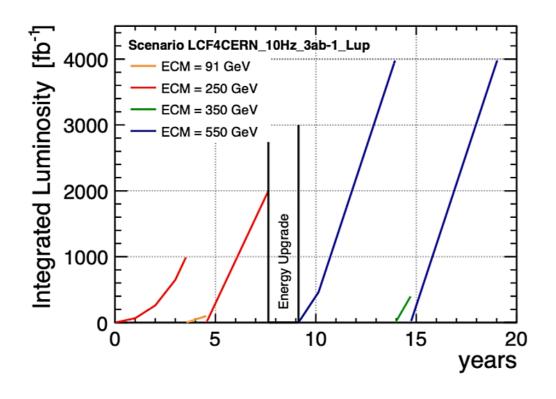
- Giga-Z does not compare to Tera-Z in statistical precision
- OBUT, we have do decide do we want $\delta(\lambda/\lambda_{SM})^{\sim}$ 20% and Tera-Z (i.e. FCCee) or $\delta(\lambda/\lambda_{SM})$ <10% and Giga-Z EW studies
- AND, theoretical uncertainties would have to follow Tera-Z statistical precision

LET'S DISCUSS SOME CRITICISM (ON THE LC PHYSICS PROGRAM)


- Often (example on Heavy Neutral Leptons) one low-energy (<500 GeV) e⁺e⁻ machine is not enough
- LC is flexible to extensions (so is FCCee, but more expensive)

I. Bozovic

Or, to really force direct searches at 10(s) TeV one could go to muon collider (time-scale, feasibility, etc.)

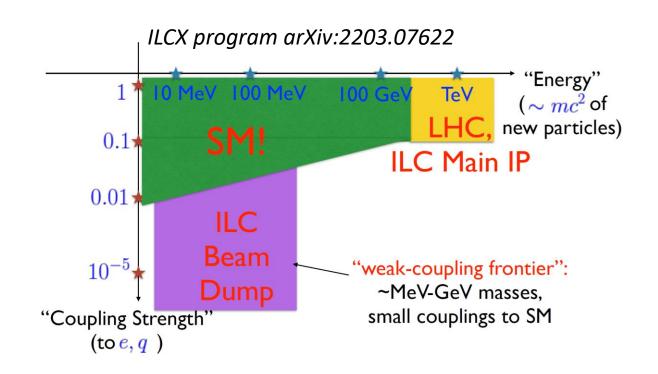

LCF FOR CERN

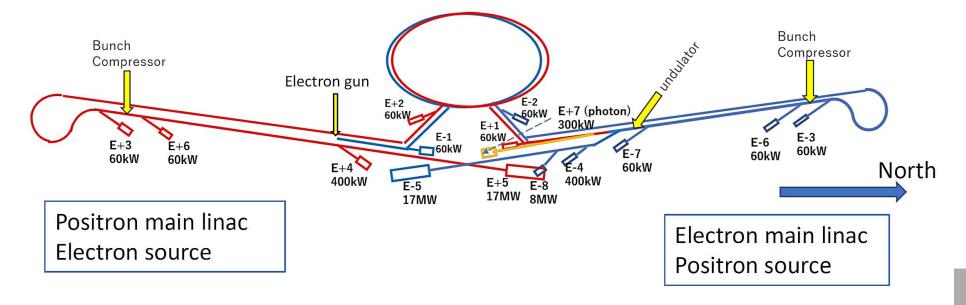
- LC Vision promotes LCF for CERN https://arxiv.org/abs/2503.24049
- Supported by ITN (accelerator studies at KEK and CERN and laboratories in UK, Germany, France, Italy, Spain)
- o A linear collider facility (LCF): ILC-like based on SCRF, 31 km (550 GeV) with XFEL-like tunnel (5.2-5.6)m
- \circ Key changes w.r.t. the ILC: Bunch trains 5 Hz to 10 Hz, double numbers of bunches per train (1316 \rightarrow 2625)
- o A full life-cycle assessment according to ISO standards (ARUP study) https://edms.cern.ch/document/2917948/1
- o 2 interaction regions: 2nd Beam Delivery System by switching on train-by-train basis have been designed
- \circ 2nd interaction region offers complementary physics opportunities ($\gamma\gamma$, e γ with optical or x-ray lasers)
- \circ SCRF upgrade: Excellent chances to reach ≤ 1 TeV in the same tunnel (60 MV/m)

I. Bozovic

LCF MAIN PARAMETERS

Quantity	Symbol	Unit LCF	Initial-250	Upgr 250 FP	ades 550 FP	Initial-550 550 LP	Upgrade 550 FP
Name			250 LP				
Centre-of-mass energy	√s	GeV	250	250	550	550	550
Inst. luminosity		cm ⁻² s ⁻¹)	2.7	5.4	7.7	3.9	7.7
Polarisation		P(e ⁺) (%)	80 / 30	80 / 30	80 / 60	80 / 30	80 / 60
Repetition frequency	f_{rep}	Hz	10	10	10	10	10
Bunches per pulse	n _{bunch}	1	1312	2625	2625	1312	2625
Bunch population	$N_{\rm e}$	10 ¹⁰	2	2	2	2	2
Linac bunch interval	Δt_{b}	ns	554	366	366	554	366
Beam current in pulse	I _{pulse}	mA	5.8	8.8	8.8	5.8	8.8
Beam pulse duration	t_{pulse}	μs	727	897	897	727	897
Average beam power	P_{ave}	MW	10.5	21	46	23	46
Norm. hor. emitt. at IP	$\gamma \varepsilon_{x}$	μ m	5	5	10	10	10
Norm. vert. emitt. at IP	$\gamma \varepsilon_{y}$	nm	35	35	35	35	35
RMS hor. beam size at IP	σ_{x}^{*}	nm	516	516	452	452	452
RMS vert. beam size at IP	σ_{y}^*	nm	7.7	7.7	5.6	5.6	5.6
Lumi frac. in top 1 %	Local 4	%	73	73	58	58	58
Lumi in top 1 %	$\mathscr{L}_{0.01}$ (10	$34 cm^{-2} s^{-1}$)	2.0	4.0	4.5	2.2	4.5
Site AC power	P _{site}	MW	143	182	322	250	322
Annual energy consumption		TWh	0.8	1.0	1.8	1.4	1.8
Site length	L_{site}	km	33.5	33.5	33.5	33.5	33.5
Average gradient	g	MV/m	31.5	31.5	31.5	31.5	31.5
Quality factor	Q_0	10 ¹⁰	2	2	2	2	2
Construction cost		BCHF	8.29	+0.77	+5.46	13.13	+1.40
Construction labour		kFTE y	10.12		+3.65	13.77	
Operation and maintenance		MCHF/y	156	182	322	273	322
Electricity		MCHF/y	66	77	142	115	142
Operating personnel		FTE	640	640	850	850	850


AUXILIARY RESEARCH PROGRAM


o Fix target experiments:

 extraction of bunches before IP, monoenergetic, extremely stable, few 10¹⁰ particles
 1-10 Hz (non-perturbative QED)

o Beam dump experiments:

 disrupted beam after IP, broad energy spectrum up to 10¹⁵ electrons on target / s (feebly interacting particles, dark photons, axions, ALPs)

SUMMARY

- O Discovery of H(125) completed the SM particle spectrum and taught us how the EW symmetry was broken. However, it does not tell us why it was broken (why μ 2 < 0?). To address this question we need to go beyond the SM.
- Higgs studies are opening a window to BSM and to a better understanding of the Universe (DM, CPV, EWBG..).
- o LCF offers high-precision Higgs measurements at an immediate time scale
- LCF offers 550 GeV and above operation required to resolve the Higgs self-coupling at a percent level
- o Capable to operate from the Z-pole to a TeV scale, LCF offers full Higgs/top/EW e+e- physics program
- \circ LCF is upgradable in novel and conventional ways (plasma wakefield acceleration, advanced SCRF, ERL, etc.) and versatile ($\gamma\gamma/e\gamma$ collisions, auxiliary experiments)
- Tunable to a potential HL-LHC discovery at any stage of operation

If CEPC is going to be realized, LCF is an optimal concurrent and complementary machine for exploration of BSM (that can be hosted at CERN or elsewhere)

I. Bozovic

- o Will China go with the CEPC?
- o If yes, should we (Europe) duplicate the machine?
- o Go directly to pp collisions?
- o Go for a linear collider?
- o Have projects in the LHC tunnel?
- o Go straight to muon collider?

AND, IF NOT....

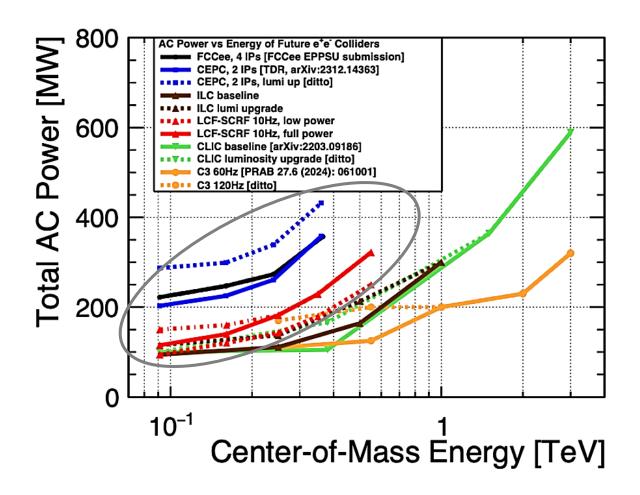
- O Both circular (FCC like) and LC-like machines offer attractive physics program and upgrade options
- Everybody can find his/her own preferred physics model to prove that a certain machine is 'better'*
- Time-scale is important*
- Funding as well
- o It is clear that very many parameters enter the equation ...

^{*}personal point of view

Sources

ID Title	Contact
40 The Linear Collider Facility (LCF) at CERN	Jenny List
57 HALHF: a hybrid, asymmetric, linear Higgs factory using plasma- and RF-based acceleration	Brian Foster
78 The Compact Linear e+e- Collider (CLIC)	Erik Adli
97 ESPPU INPUT: C3 within the "Linear Collider Vision"	Emilio Nanni
140 A Linear Collider Vision for the Future of Particle Physics	Jenny List
152 US Muon Collider Community White Paper for the European Strategy for Particle Physics Update	e Sergo Jindariani
154 Midterm Review of the European Accelerator R&D Roadmap	Mike Seidel
165 A Possible Future Use of the LHC Tunnel	Marco Drewes
174 Phase-One LHeC	Krzysztof Piotrzkowski
188 LEP3: A High-Luminosity e+e- Higgs & Electroweak Factory in the LHC Tunnel	Tiziano Camporesi

CUACNEO!


BACKUP

POWER CONSUMPTION

A decade of studies to reduce power:

- Designs optimizations
- SRF cavities (gradient, Q),
- cryo efficiency
- RF power system (klystrons, modulators, components),
- RF to beam efficiencies
- improved magnets
- heat recovery
- nanobeams

Re-use of the LHC tunnel

LEP3:

- **Pre-conceptual design** with operation limited to 230 GeV, but not yet validated by simulation studies to confirm performance (luminosity, power consumption, ...)
- Large SC RF system, possible need for SC magnets, and high-energy booster installed in the same tunnel of the collider demand for integration studies to assess extent of the civil engineering
- Prospected luminosity x IP number lower by a factor 6 to 10 as compared to FCC-ee, power consumption comparable to that of FCC-ee (at low energy).
- Resources for operation comparable to LHC

Re-use of the LHC tunnel

LHeC:

- Detailed conceptual design developed and based on high-current high-energy ERL
- Civil engineering required for the ERL tunnel
- Requires demonstration of high-current multi-turn energy recovery → PERLE @ IJCLab
- Technically-driven schedule for LHeC implies operation after the end of the presently planned HL-LHC programme at the earliest
- Yearly electricity consumption comparable to FCC-ee at low energy and expected operation resources comparable to LHC

General considerations for options using the LHC tunnel:

- major infrastructure investments and operating costs
- delay of the implementation of a next-generation collider by at least one decade cannot be considered as "bridge" options but as alternative to other proposed colliders

Muon Collider

- Muon Collider (MC) ambitions to approach 10 TeV pCM energy.
- MC has not yet reached a maturity level that gives sufficient confidence in its feasibility.
- Demonstration of 6D cooling is a necessary condition to assess feasibility and performance
- A variety of technological challenges are associated with the various acceleration steps
- The technical design of the demonstrator and its construction demand resources significantly exceeding the present level.
- A detailed timeline cannot be defined at present but only sketched with some decision points.