

Inclusive production of vector bosons in CMS

Itana Bubanja On behalf of CMS Collaboration

University of Montenegro and Universite libre de Bruxelles

21st Lomonosov Conference on Elementary Particle Physics

Moscow, August 2023

• High rates of W, Z production at the LHC

- High rates of W, Z production at the LHC
- The most recent CMS results

- High rates of W, Z production at the LHC
- The most recent CMS results
- "Clean" and well understood final state

- High rates of W, Z production at the LHC
- The most recent CMS results
- "Clean" and well understood final state
- Highly important analyses:
 - Partonic structure of protons
 - improving and developing theory predictions
 - **Probe** for pQCD as well as npQCD in different regions
 - EWK parameters, putting limits, coupling constant calculations...

- Data: 2016
- Luminosity: 35.9 fb⁻¹
- Inclusive fiducial and differential production cross sections as a function of pT (also φ^{*}, and |y|)

JHEP 12(2019)061

- Data: 2016
- Luminosity: 35.9 fb⁻¹
- Inclusive fiducial and differential production cross sections as a function of pT (also φ^{*}, and |y|)

Event selection:

- Two opposite charged isolated leptons
- Dressed with photons in ΔR (I, γ) < 0.1
- Lepton pT > 25 GeV
- Lepton $|\eta| < 2.4$

JHEP 12(2019)061

- Data: 2016
- Luminosity: 35.9 fb⁻¹
- Inclusive fiducial and differential production cross sections as a function of pT (also φ^{*}, and |y|)

Event selection:

- Two opposite charged isolated leptons
- Dressed with photons in $\Delta R (I, \gamma) < 0.1$
- Lepton pT > 25 GeV
- Lepton $|\eta| < 2.4$

Theoretical predictions:

- MadGraph
- POWHEG &
 POWHEG-MINLO
- FEWZ
- Parton branching TMD
- GENEVA
- RESBOS

- The predictions are consistent with the measurements within the theoretical uncertainties.
- The POWHEG prediction at high pT, above 100 GeV, disagree with data.

- The MadGraph5 aMC@NLO and POWHEG - consistent with the data within the theoretical uncertainties.
- The FEWZ prediction with the NNPDF 3.1 PDF set - within 5% of the measurement over the entire |y₇ | range

- The predictions are consistent with the measurements within the theoretical uncertainties and describe data well at low pT.
- PB TMD predictions deviate from data at high pT.

- The measured cross section values agree with the theoretical predictions within uncertainties.
- The predicted values are :
 - $\sigma_z \rightarrow II = 682 \pm 55$ pb with MadGraph5 AMC@NLO
 - $\sigma_z \rightarrow II = 719 \pm 8 \text{ pb with}$ fixed order FEWZ

Cross section			$\sigma \mathcal{B} \text{ [pb]}$				
$\sigma_{\mathrm{Z} \to \mu\mu}$	694	±	6	(syst)	±	17	(lumi)
$\sigma_{\rm Z \rightarrow ee}$	712	\pm	10	(syst)	\pm	18	(lumi)
$\sigma_{\mathrm{Z} \to \ell \ell}$	699	±	5	(syst)	±	17	(lumi)

Eur. Phys. J. C 83 (2023) 628

- Data: 2016
- Luminosity: 36.3 fb⁻¹
- pT of the pair (also ϕ^*)
- Five mass bins: 50-1000 GeV
- Di-electron and di-muon channels combined

Eur. Phys. J. C 83 (2023) 628

- Data: 2016
- Luminosity: 36.3 fb⁻¹
- pT of the pair (also ϕ^*)
- Five mass bins: 50-1000 GeV
- Di-electron and di-muon channels combined

Event selection:

- Two opposite charged isolated leptons
- Dressed with photons in $\Delta R (I, \gamma) < 0.1$
- Lepton pT > 25, 20 GeV
- Lepton |η| < 2.4

Eur. Phys. J. C 83 (2023) 628

- Data: 2016
- Luminosity: 36.3 fb⁻¹
- pT of the pair (also ϕ^*)
- Five mass bins: 50-1000 GeV
- Di-electron and di-muon channels combined

Event selection:

- Two opposite charged isolated leptons
- Dressed with photons in ΔR (I, γ) < 0.1
- Lepton pT > 25, 20 GeV
- Lepton $|\eta| < 2.4$

Theoretical predictions:

- Madgraph5_AMC@NLO
- MiNNLO
- Cascade
- Artemide
- Geneva

Eur. Phys. J. C 83 (2023) 628

Predictions

Theoretical predictions:

- Madgraph5_AMC@NLO
- MiNNLO
- Cascade
- Artemide
- Geneva

ME	Resum	MC	comments
MADGRAPH5_AMC@	DNLO		
Z + 0, 1, 2	j NLO PS	MC	Baseline for LHC experiments
MINNLO			
NNLC) PS	MC	
ARTEMIDE			
LO	TMD	Analytic	no QED FSR
	$\simeq \mathrm{N}^{3}\mathrm{LL}$		Valid for $p_{\rm T} < 0.2 m_{\ell\ell}$
CASCADE	·		
Z + 0j	or PB-TMD	MC	no MPI
$\mathrm{Z}+1\mathrm{j}$ at	NLO		
GENEVA NNLC) $N^3 LL'_{q_T}$	MC	

Theoretical predictions:

Madgraph_AMC@NLO

Theoretical predictions:

- Madgraph_AMC@NLO
- MiNNLO

p_T(ℓℓ) [GeV]

Theoretical predictions:

- Madgraph_AMC@NLO
- MiNNLO
- Cascade

Theoretical predictions:

- Madgraph_AMC@NLO
- MiNNLO
- Cascade
- Artemide

8

Theoretical predictions:

- Madgraph_AMC@NLO
- MiNNLO
- Cascade
- Artemide
- Geneva

Eur. Phys. J. C 83 (2023) 628

Eur. Phys. J. C 83 (2023) 628

masses

JHEP 08 (2022) 063

- Data: 2016, 2017, 2018
- Luminosity: 138 fb⁻¹
- Asymmetry(A_{FB}) and the angular coefficient (A₀) as a function of lepton pair mass
- Masses larger than 170 GeV in 7 mass ranges
- Di-electron and di-muon channels combined

masses

JHEP 08 (2022) 063

- Data: 2016, 2017, 2018
- Luminosity: 138 fb⁻¹
- Asymmetry(A_{FB}) and the angular coefficient (A₀) as a function of lepton pair mass
- Masses larger than 170 GeV in 7 mass ranges
- Di-electron and di-muon channels combined

<u>Évent selection:</u>

- Two opposite charged isolated leptons
- Leading muon pT(2016/2017/2018) > 26/29/26 GeV and subleading pT > 15 GeV
- Leading electron pT(2016/2017/2018) > 29/38/35 GeV and subleading pT > 15 GeV
- Muons: |η| < 2.4, electrons: |η| < 2.5

masses

JHEP 08 (2022) 063

- Data: 2016, 2017, 2018
- Luminosity: 138 fb⁻¹
- Asymmetry(A_{FB}) and the angular coefficient (A₀) as a function of lepton pair mass
- Masses larger than 170 GeV in 7 mass ranges
- Di-electron and di-muon channels combined

<u>Évent selection:</u>

- Two opposite charged isolated leptons
- Leading muon pT(2016/2017/2018) > 26/29/26 GeV and subleading pT > 15 GeV
- Leading electron pT(2016/2017/2018) > 29/38/35 GeV and subleading pT > 15 GeV
- Muons: |η| < 2.4, electrons: |η| < 2.5

- The difference between the dimuon and dielectron asymmetries - a test of lepton flavor universality
- To set limits on the presence of additional gauge bosons

• Measure the **angle** between **final state lepton** and **initial quark**

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}},$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right]$$

- A₀ and A₄ are the standard dimensionless constants parameterizing the angular distribution of the DY process
- The angular coefficients A₀ and A₄ vary as functions of the mass (m), transverse momentum (pT), and rapidity (y) of the dilepton system

 The results for the template fits to data to extract A_{FB} in different mass bins

masses

- Test of lepton flavor universality - the difference between the dimuon and dielectron A_{FB} - agreement with zero to within 2.4 standard deviations
- Measured asymmetry 0.612 ± 0.005 (stat) ± 0.007 (syst)

JHEP 08 (2022) 063

 Measured angular coefficient is 0.047 ± 0.005 (stat) ± 0.013 (syst)

 Measurements of A₀ probe higher-order corrections in perturbative QCD.

masses

JHEP 08 (2022) 063

- Combined A_{FB} measurements - limits on the existence of additional gauge bosons.
- For a Z' boson, in the canonical sequential standard model, the observed (expected) 95% confidence level lower limit on the Z' mass is 4.4 TeV (3.7 TeV).

Measurement of the т lepton polarisation in the Z boson decays

- Data: 2016
- Luminosity: 36.3 fb⁻¹
- Leptonic and hadronic τ lepton decays in Z→ττ events
- All possible tau decays are covered

Measurement of the т lepton polarisation in the Z boson decays

- Data: 2016
- Luminosity: 36.3 fb⁻¹
- Leptonic and hadronic τ lepton decays in Z→ττ events
- All possible tau decays are covered

Final state	Trigger	Lepton selection	Additional selection	
$\tau_{\rm h} \tau_{\rm h}$	$\tau_{\rm h}~(35{\rm GeV})\tau_{\rm h}~(35{\rm GeV})$	$p_{\rm T}^{ au_{\rm h}} > 45(40){ m GeV}, \eta^{ au_{ m h}} < 2.1$	Med DeepTau iso	
$ au_{\mu} au_{ m h}$	μ(22 GeV)	$p_{\rm T}^{\mu} > 23 { m GeV}, \eta^{\mu} < 2.1$	$I_{rel}(\mu) < 0.15$	$m_T^\mu < 50{\rm GeV}$
	or μ (19 GeV) $\tau_{\rm h}$ (20 GeV)	$p_{\rm T}^{\mu} > 20 {\rm GeV}, p_{\rm T}^{{}_{\rm Th}} > 30 {\rm GeV}, \eta^{{}_{\rm Th}} < 2.3$	Med DeepTau iso	
$\tau_e \tau_h$	e(25 GeV)	$p_{\rm T}^{e} > 30 { m GeV}, \eta^{e} < 2.1$	$I_{rel}(e) < 0.15$	$m_T^{\ell} < 50 \text{GeV}$
		$p_{\rm T}^{\tau_{\rm h}} > 30 { m GeV}, \eta^{\tau_{\rm h}} < 2.3$	Med DeepTau iso	
$\tau_e \tau_u$	µ(8 GeV)e(23 GeV)	$p_{\mathrm{T}}^{e} > 15 \mathrm{GeV}, \left \eta^{e}\right < 2.4$	$I_{rel}(e) < 0.15$	
070 F 3	or $\mu(23\text{GeV})e(12\text{GeV})$	$p_{ m T}^{\mu} > 15 { m GeV}, \eta^{\mu} < 2.4$	$I_{rel}(\mu) < 0.20$	
		$p_{\rm T}^{\ell} > 24 {\rm GeV}$ for lead trigger leg		

Measurement of the **T** lepton polarisation in the Z boson

decays

CMS-SMP-PAS-18-010

- Measure average polarisation of τ leptons in Z/γ events
- Z boson couplings are different for left and right-handed fermions
- The spin of t lepton and spin correlations of t lepton pairs can be determined and be used to explore new physics
- Convert polarisation into effective weak mixing angle sin²θ_w
- The best sensitivity on Pτ -> μ + ρ category - a good selection efficiency and a good reconstruction of the optimal observable ω_{vis}
- The least sensitivity the fully hadronic decay channel high trigger thresholds therefore poor selection efficiency.

Measurement of the T lepton polarisation in the Z boson

decays

<u>CMS-SMP-PAS-18-010</u>

The measured value for the τ polarization:
 Pτ (Z) = -0.144 ± 0.006 (stat) ± 0.014 (syst) = -0.144 ± 0.015

In agreement with measurements by the SLD experiment, at LEP, and by the ATLAS experiment and with the standard model value of the lepton asymmetry parameter A_i = 0.1468 ± 0.0003

- More precise than the ATLAS measurement and nearly as precise as single LEP experiments
- The effective weak mixing angle:
 - \circ sin² θ_{w}^{eff} = 0.2319 ± 0.0019

Asymmetry A₁

Precision measurement of W boson decay branching fraction

- Data: 2016
- Luminosity: 35.9 fb⁻¹
- The leptonic and inclusive hadronic decay branching fractions

Precision measurement of W boson decay branching fraction

- Data: 2016
- Luminosity: 35.9 fb⁻¹
- The leptonic and inclusive hadronic decay branching fractions

Event selection:

- ee and µµ events are rejected if invariant mass is between 75 and 105 GeV
- Electron (muon) pT > 30 (25) GeV; |η| < 2.5 (2.4)
- Hadronically decaying τ leptons - pT > 20 GeV; |η| < 2.3

Precision measurement of W boson decay branching fraction Phys. Rev. D 105, 072008

- Data: 2016
- Luminosity: 35.9 fb⁻¹
- The leptonic and inclusive hadronic decay branching fractions

Event selection:

- ee and µµ events are rejected if invariant mass is between 75 and 105 GeV
- Electron (muon) pT > 30
 (25) GeV; |η| < 2.5 (2.4)
- Hadronically decaying τ leptons - pT > 20 GeV; |η| < 2.3

- Precision measurement
- The leptonic and inclusive hadronic decay branching fractions
- Lepton flavor universality
 (LFU) violation test
- Features are made for the best isolation of $W \rightarrow \tau$ decays

Precision measurement of W boson decay branching fraction

- Leptonic widths of the W boson Γ (W $\rightarrow I^- \nu$)
- Hadronic widths of the W boson Γ (W → qq')
- Total width Γ_{tot}

	CMS	LEP
$\mathcal{B}(W \to e\bar{\nu}_e)$	$(10.83 \pm 0.01 \pm 0.10)\%$	$(10.71 \pm 0.14 \pm 0.07)\%$
$\mathcal{B}(W \to \mu \bar{\nu}_{\mu})$	$(10.94 \pm 0.01 \pm 0.08)\%$	$(10.63 \pm 0.13 \pm 0.07)\%$
$\mathcal{B}(W \to \tau \bar{\nu}_{\tau})$	$(10.77 \pm 0.05 \pm 0.21)\%$	$(11.38 \pm 0.17 \pm 0.11)\%$
$\mathcal{B}(W \to q\bar{q}')$	$(67.46 \pm 0.04 \pm 0.28)\%$	· · · · · ·
	Assuming LFU	J
$\mathcal{B}(W \to \ell \bar{\nu})$	$(10.89 \pm 0.01 \pm 0.08)\%$	$(10.86 \pm 0.06 \pm 0.09)\%$
$\mathcal{B}(W \to q\bar{q}')$	$(67.32 \pm 0.02 \pm 0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$

Precision measurement of W boson decay branching fraction Phys. Rev. D 105, 072008

- **Consistent with the LFU** hypothesis for the weak interaction
- More precise than previous measurements based on LEP experiments data (about 1.5 time)
- Ratio of hadronic-to-leptonic branching fractions to the theoretical prediction is used to derive some standard model parameters
- Strong coupling constant at the W boson mass scale α_s = 0.095 ± 0.033

Summary

- Overview of several current analysis involving Z and W bosons
- Run II data collected by CMS detector in proton-proton collisions at 13TeV
- Better understanding of the QCD and EW
- Important test for new models and some physics concepts
- Putting limits to current physics models

