

Semileptonic decays and tests of lepton flavour universality at Belle II

Christoph Schwanda Austrian Academy of Sciences Representing the collaboration

21st Lomonosov Conference on Elementary Particle Physics August 24-30, 2023, Moscow State University

Search for LFU violation **Motivation**

- Physics beyond the Standard Model can spoil the universality of lepton flavour couplings
 - avenue for searching for New Physics
- Semileptonic B meson decays combine high rate and low experimental background
 - They thus present an excellent tool for LFU searches
 - There is a long-standing 3σ LFU anomaly in semitationic B decays

• Probing lepton flavour universality (LFU) is thus a promising, theoretically clean

Outline **Belle II results covered in this presentation**

- Measurement of R(X)[189/fb, EPS-HEP 2023]
- Measurement of $R(D^*)$ [189/fb, Lepton Photon 2023]
- Tests of light-lepton universality in angular asymmetries of $B \to D^* \ell \nu$ [189/fb, arXiv:2308.02023, submitted to Phys. Rev. Lett.]
- [189/fb, <u>arXiv:2301.08266</u>, <u>Phys. Rev. Lett. 131, 051804 (2023)</u>]

• Test of light-lepton universality in inclusive semileptonic B meson decays

The Belle II detector

Belle II timeline Luminosity projection

Measurement of R(X)

[189/fb, EPS-HEP 2023]

Reconstruction

- Reconstruct one B meson in a hadronic decay mode $(B_{\rm tag})$
- Reconstruct a leptonic τ within remaining particles $(\tau \rightarrow e \nu \nu, \mu \nu \nu)$
 - $p_{T,\text{lab}}(e) > 0.3/0.5 \text{ GeV}, p_{T,\text{lab}}(\mu) > 0.4/0.7 \text{ GeV}$
- The remaining particles on the signal side are collectively referred to as \boldsymbol{X}
- Main challenge: correct model of backgrounds
 - Data-driven $X\ell\nu$ re-shaping using the M_X distribution in the $p_\ell^B>1.4$ GeV region

Signal extraction

• From the p_{ℓ}^{B} vs. M_{miss}^{2} distribution, separately for *e* and μ events

• 34 bins in
$$p_{\ell}^B$$
 vs. $M_{\rm miss}^2$

• 2×4 fit components: $X\tau\nu, X\ell\nu, B\bar{B}$ background (fakes and secondaries), continuum (off-resonance data, yield constrained)

Results

$$R(X) = \frac{\mathcal{B}}{\mathcal{B}}$$

preliminary

Measurement of $R(D^*)$

[189/fb, Lepton Photon 2023]

Reconstruction

Reconstruct one B meson in a hadronic decay mode

• Reconstruct a D^* and a leptonic τ decay ($\tau \rightarrow e\nu\nu, \mu\nu\nu$) on the signal-side within remaining particles

• Three D^* modes: $D^{*+} \to D^0 \pi^+, D^+ \pi^0, D^{*0} \to D^0 \pi^0$

• Rest of the event: no charged tracks, no π^0 candidates

Main challenge: three neutrinos in the final state \rightarrow significant, sometimes poorly understood ($D^{**}\ell\nu$) backgrounds

Data-driven validation of the background model Using different side bands

 $M_{\rm miss}^2$ [(GeV/ c^2)²]

$R(D^*)$ signal extraction

- Two-dimensional binned likelihood fit to
 - $E_{\rm ECL}$: energy remaining in the calorimeter after removing all reconstructed particles

•
$$M_{\text{miss}}^2 = (p_{e^+e^-} - p_{B_{\text{tag}}} - p_{D^*} - p_{\ell})^2$$
: missing

B→D*ℓv

mass of the event

Results

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \ell \nu_{\ell})}$$
$$R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat.}) \stackrel{+0.028}{_{-0.033}}(\text{syst.})$$

preliminary

- First $R(D^*)$ result from Belle II data
- Main systematics: MC statistics, shape of $E_{\rm ECL}$
- Consistent both with the SM and other experimental determinations of $R(D^*)$

Tests of light-lepton universality in angular asymmetries of $B \to D^* \mathcal{E} \nu$

[189/fb, arXiv:2308.02023, submitted to Phys. Rev. Lett.]

Definition of angular observables in $B \rightarrow D^* \ell \nu$

$$\mathcal{A}_x(w) \equiv \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_0^1 - \int_{-1}^0\right] \mathrm{d}x \frac{\mathrm{d}^2\Gamma}{\mathrm{d}w\mathrm{d}x}$$

with
$$x = \cos \theta_{\ell}$$
 for $A_{\rm FB}$
 $\cos 2\chi$ for S_3
 $\cos \chi \cos \theta_V$ for S_5
 $\sin \chi \cos \theta_V$ for S_7
 $\sin 2\chi$ for S_9

$$\Delta \mathcal{A}_x(w) \equiv \mathcal{A}_x^{\mu}(w) - \mathcal{A}_x^e(w)$$

• 4σ tension in ΔA_{FB} seen in Belle $B \to D^* \ell \nu$ data: Eur. Phys. J. C 81, 984 (2021), <u>arXiv:2104.02094 [hep-ph]</u> • Correlation between angular observables: Phys. Rev. D 107 (2023) 1, 015011, arXiv:2206.11283 [hep-ph]

- - $\Upsilon(4S)$ events

Test of light-lepton universality in inclusive semileptonic B meson decays

[189/fb, arXiv:2301.08266, Phys. Rev. Lett. 131, 051804 (2023)]

 $R(X_{e/\mu})$

- Analysis and background correction technique is shared with the R(X)measurement
- The ratio of inclusive semileptonic decays to e and to μ is obtained in the region $p_{\ell}^{B} > 1.3 \text{ GeV}$
- Result

- Main systematics: lepton identification
- Most precise LFU test so far (2%), consistent with SM

SVS

Semileptonic decays and $|V_{cb}|, |V_{ub}|$

Summary and conclusion

- Belle II has probed lepton flavour universality (LFU) in semileptonic B meson decays
 - First measurement of inclusive semitauonic B decays at the $\Upsilon(4S) R(X)$
 - First measurement of $B \to D * \tau \nu$ at Belle II $R(D^*)$
 - Forward-backward asymmetry (and other angular observables) in $B\to D^*\ell\nu$ separately for $\ell=e,\mu$
 - Most precise test of light lepton universality in inclusive semileptonic B decays
- So far, results are consistent with the SM and previous experimental findings. There is still large room for improvement as more Belle II data is collected

Backup

Untagged vs. Tagged

Untagged:

only $B_{\rm sig}$ is reconstructed

high signal yield (+) high backgrounds (-) poor neutrino reconstruction (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed to take advantage of $\Upsilon(4S)$ kinematics

signal yield O(10³) lower (-) low backgrounds (+) good neutrino reconstruction (+) tag calibration (-)

N

 π^+

 $\bar{\mathbf{D}}_0$

 e^+

Hadronic tagging at Belle II

Comput Softw Big Sci (2019) 3: 6.

- The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains
 - $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at low purity (about 50% increase with respect to the Belle tag)

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \; {
m GeV}/c^2$$

