The progress of Super Tau Charm Facility in CHINA

Qian Liu

(On behalf of the STCF team)

University of Chinese Academy of Sciences

21st Lomonosov Conference on Elementary Particle Physics Moscow state university Aug 30, 2023

STCF project in China

- Physics in STCF
- Accelerator design consideration
- Detector conceptual design and R&D
- Summary and outlook

Super tau-charm facility (STCF) in China

- Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- Total cost: 4.5B RMB

- 1 ab⁻¹ data expected per year
- Rich of physics program, unique for physics with c quark and τ leptons,
- Important playground for study of QCD, exotic hadrons, flavor physics and search for new physics.

Expected data samples at STCF

- STCF is expected to have higher detection efficiency and low bkg. for productions at threshold
- STCF has excellent resolution, kinematic constraining
- Opportunities at 5-7 GeV which is experimentally blank before

Physics program of STCF

^{*}Due to time constraints, only one or two types will be briefly introduced For specific details, please refer to the CDR

Hadrons Spectrum

★ Experiments at particle accelerators in last fifties and sixties created more than 100 hadrons
→ "hadronic zoo"

Quark model established order in the hadronic zoo

M. Gell-Mann, A schematic model of baryons and mesons: Phys.Lett. 8 (1964) 214-215

"Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc".

G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. CERN-TH-401

"In general, we would expect that baryons are built not only from the product of these aces, *AAA*, but also from $\bar{A}AAAA$, $\bar{A}\bar{A}AAAAA$, etc., where \bar{A} denotes an anti-ace. Similarly, mesons could be formed from $\bar{A}A$, $\bar{A}\bar{A}AA$, etc.".

- Suggested by self-coupling of gluons of QCD, glueballs and hybrids exist.
- Experimental searches for exotic hadrons have a long history
- Recent high-quality data samples from several experiments allow us study the properties of established mesons, and search for new states.

2021-

2019-

 $P_{c}(4457)$

 $P_{c}(4440)$

X(4685)

X(4630)

7 (2985)

Heavy "nonstandard" hadron candidates

- Large amount of experimental activity on the "nonstandard" heavy sector
 - $\succ e^+e^-$ direct production: BESIII, Belle, BaBar
 - $pp/p\bar{p}$ promote production: LHCb, CMS, ALTAS... \succ
 - Quarkonia decay: BESIII, Belle, BaBar \geq
- X(4274) 2015-B, Λ_h decays: Belle, Babar, LHCb \succ $P_{c}(4312)$ X(4500) $P_{c}(4380)$ 2013-X(3842) X(4700) $P_{c}(4450)$ X(6900) Z_c(3900) 2011-Y(4220) X₀(2900) $Z_{c}(4020)$ Z_b(10610) Y(4390) 2009-X₁(2900) Z(4200) Z_b(10650) X(4140) 2007-X(4350) X(3940) 2005-X(4160) X(3915) 2003-Y(4260) Y(4360) $Y_{\rm b}(10860)$ Y(4660) X(4050) Most of them are with masses in 4-7 GeV. X(4250) Z(4430)
 - However, their properties are still poorly known.

2017-

Before 2003, it was thought that charmonium states, being bound states of a charm and an anticharm guark, should be well described by nonrelativistic potential guark models. However, since the discovery of the X(3872) by Belle in 2003, a large number of new resonance(-like) structures have been observed in the charmonium mass region by various experiments, including BESIII, BaBar, Belle, CDF, D0, ATLAS, CMS and LHCb.

Charmonium (Like) states at STCF

□ Belle II : ISR approach; B meson decay ($m_R < 4.8 \text{ GeV}$)

LHCb: B/Λ_b decay; Prompt production

STCF: Scan with 10 MeV/step, every point has 10 fb⁻¹/year, 3 ab⁻¹ in 4-7 GeV

arXiv: 2203.07141

Charm physics

- **LHCb:** huge x-sec, boost, 9 fb⁻¹ now (×40 current B factories)
- B-factories (Belle(-II), BaBar): more kinematic constrains, clean environment, ~100% trigger efficiency
- τ-charm factory : Low backgrounds and high efficiency, Quantum correlations and CP-tagging are
 unique
 STCE
 Relle II
 UHCh

•		STCF	Belle II	LHCb
\succ STCF :	Production yields	**	****	****
• 4×10^9 pairs of D ^{±,0} and $10^8 D_s$ pairs per year	Background level	****	***	**
- 10 ¹⁰ charm from Belle II/year	Systematic error	****	***	**
Highlighted Physics programs	Completeness	****	***	*
– Precise measurement of (semi-)leptonic decay (f_D , f_{Ds} , CKM matrix)	(Semi)-Leptonic mode	*****	****	**
- <i>D</i> decay strong phase (Determination of $\gamma/\phi 3$ angle)	Neutron/K _L mode	****	★★★☆☆	☆
$- D^{*} - D^{*} \text{ mixing, CPV}$ - Rare decay (FCNC, LFV, LNV)	Photon-involved	****	****	***
– Excite charm meson states D_J , D_{sJ} (mass, width, J^{PC} , decay modes)	Absolute measurement	****	***	\$
- Charmed baryons (J ^{PC} , Decay modes, absolute BF)				1

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud}V_{us}V_{ub}\\ V_{cd}V_{cs}V_{cb}\\ V_{td}V_{ts}V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Leptonic and semileptonic decays of charmed hadrons (D⁰, D⁺, Ds⁺, Λ_c^+) provide ideal testbeds to explore weak and strong interactions

- 1. $|V_{cs(d)|:}$ better test on CKM matrix unitarity
- 2. (Semi-)leptonic D(s) decays allow for LFU tests
- 3. $f_{D(s)}^{+}, f^{+K(\pi)}(0)$: test of LQCD

Purely Leptonic:

Semi-Leptonic:

Sensitivity study

Precision frontier for testing of SM parameters, uncertainties from reducible (selection-based), and irreducible sources (theoretical input, instrument effect).

Sensitivity of various rare/forbidden decays from STCF measurements are compared with various BSM models. The excellent precision from STCF can be used to distinguish from various BSM models.

STCF accelerator

Challenge: realize luminosity of >0.5x10³⁵ cm⁻² s⁻¹

$$L(cm^{-2}s^{-1}) = \frac{\gamma n_b I_b}{2 e r_e \beta_y^*} H \xi_y$$

Interaction Region: Large Piwinski Angle Collision + Crabbed Wais

Parameters	Phase1	Phase2
Circumference/m	600~800	600~800
Optimized Beam Energy/GeV	2.0	2.0
Beam Energy Range/GeV	1-3.5	1-3.5
Current/A	1.5	2.0
Emittance $(\varepsilon_x/\varepsilon_y)/nm \cdot rad$	6/0.06	5/0.05
β Function @IP $(\beta_x^*/\beta_y^*)/mm$	60/0.6	50/0.5(estimated)
Full Collision Angle 20/mrad	60	60
Tune Shift ξy	0.06	0.08
Hourglass Factor	0.8	0.8
Aperture and Lifetime	15σ, 1000s	15σ, 1000s
Luminosity @Optimized	~0.5	~1.0

bierre source of the source of

> Length: 400m

Injector:

- e⁺, a convertor, a linac and a damping ring, 0.5 GeV
- e⁻, a polarized e- source, accelerated to 0.5 GeV
- ➢ No booster, 0.5 GeV→1~3.5 GeV

Challenges for future tau-charm accelerators

Large Piwinski Angle + Crab Waist

(P. Raimondi 2006)

K. Hirata PRL 1995

Test of "Crab-Waist" Collisions at the DA Φ NE Φ Factory, PRL 2010

- Accelerator physics
 - High current and small bunches at IP →
 Collective effects and Instability increased
 - Strong Focusing→Negative chromaticity →
 Chromatic correcting sextupoles + crab waist
 sextupoles → more non-linearity
 - Smaller dynamic aperture and energy aperture, also much shorter Touschek lifetime
- Key Technologies
 - high peak luminosity : Interaction Region Misc
 - high integrated luminosity : Beam instrumentations and so on
 - Beam sources and injection : high current and quality electron and positron source; on-axis injection may be necessary

Ring lattice design

- · Beam-beam simulation, collective effective simulation are consider
- · $\sigma_z = 8.04 \text{ mm}$ (w/o IBS), $\xi_x = 0.0040 \rightarrow v_z = 2.5 \xi_x$
- · $\sigma_z = 8.94$ mm(wi IBS), $\xi_x = 0.0032 \rightarrow v_z = 3.1 \xi_x$
- w/o IBS: $\xi_y = 0.148$, $L = 1.98 \times 10^{35} \ cm^{-2} s^{-1}$
- w/ IBS: $\xi_y = 0.111$, $L = 1.45 \times 10^{35} \ cm^{-2} s^{-1}$
- Touschek Lifetime ~100s

				6 4	and a
Parameters	Units	STCF-v0.2	STCF-v0.2	STCF-v0.2	7
Ontimal beam energy F	GeV	(no wiggler)	2	2	Y
Circumference	m	616.76	616.76	616.76	-
Crossing angle 20	mrad	60	60	60	_
Relative gamma	mau	3013.0	3013.0	3013.0	
	ms	2 057	2 057	2 057	
Revolution frequency fo	kHz	486.08	486.08	486.08	
Horizontal emittance	nm		3.12	400.00	
		0.50%	0.50%	0.50%	
Vertical emittance su	nm	27	15.6	22.35	
Hor beta function at IP B	mm	40	40	40	
Ver beta function at IP β_{v}	mm	0.6	0.6	0.6	
Hor, beam size at IP, σ_{x}	um	14.70	11.17	13.37	
Ver, beam size at IP, $\sigma_{\rm V}$	um	0.127	0.097	0.116	
Betatron tune. v_x/v_y	port	31.552/24.572	31.552/24.572	31.552/24.572	
Momentum compaction factor, $\alpha_{\rm p}$	10-4	10.29	10.27	10.27	
Energy spread, σ_e	10-4		7.88	8.77	
Beam current, I	А	2	2	2	
Number of bunches, n _b		512	512	512	
Single-bunch current, I _b	mA	3.91	3.91	3.91	
Particles per bunch, N _b	10 ¹⁰	5.02	5.02	5.02	
Single-bunch charge	nC	8.04	8.04	8.04	
Energy loss per turn, U_0	keV	135.87	273	273	
Hor. damping time, τ_x	ms	60.57	30.14	30.14	
Ver. damping time, τ_y	ms	60.57	30.14	30.14	
Long. damping time, τ_z	ms	30.28	15.07	15.07	
Sidered ^{Cy, f_{RF}}	MHz	497.5	497.5	497.5	
Harmonic number, h		1024	1024	1024	
RF voltage, V _{RF}	MV	1.2	1.2	1.2	
Synchronous phase, f _s	deg	173	167	167	
Synchrotron tune, v_z		0.0100	0.0099	0.0099	
Natural bunch length, σ_z	mm	5.22	8.04	8.94	
RF bucket height, (Δ E/E) _{max}	%	1.73	1.56	1.56	
Piwinski angle, $\phi_{\mathrm P i w}$	rad	10.66	21.58	20.06	
Hor. beam-beam parameter, ξ_x		0.0094	0.0040	0.0032	
Ver. beam-beam parameter, ξ _y		0.173	0.148	0.111	
Equivalent bunch length, $\sigma_{z_{-}e}$	mm	0.49	0.37	0.45	
Hour-glass factor, F _h	0 1	0.8932	0.9287	0.9066	
Luminosity, L	cm ⁻² s ⁻¹	2.23E+35	1.98E+35	1.45E+35	

STCF Detector Conceptual design

STCF detector

Requirement:

- High detection efficiency and good resolution
- Superior PID ability
- Tolerance to high rate/background environment

 σ_{xy} < 130 μ m

σp/p ~ 0.5% @ 1 GeV

PID

 π /K (and K/p): 3-4 σ separation up to 2GeV/c

EMC

E range: 0.025-3.5 GeV

 $\sigma_{E} @ 1 \text{ GeV: } 2.5\% \text{ in barrel,} 4\% \text{ at endcaps}$

Pos. Res. : ~ 4 mm

MUD

0.4 - 1.8 GeV

 π suppression >30

Detector options

~ 6 m

Bakelite RPC + Scintillator strips

Inner Tracker

- MPGD: Cylindrical μRWELL
 - Silicon: CMOS MAPS

• Drift Chamber with extra-low mass

and small cell

Particle Identification

- Barrel: RICH
- EndCap: DIRC-Like TOF

Tracking system: inner tracker + drift chamber

单片有源像素探测器

Expected Performance of the tracking system

Optimization campaign of the inner tracker layout has been recently launched, particularly targeting low momentum tracking performance.

Particle Identification

Sarrel : A RICH detector using MPGD for photon detection (TOF technology no longer feasible for PID up to 2 GeV due to short distance of flight)

Endcaps : A DIRC-like high-resolution TOF detector is proposed (TOF option is possible thanks to the longer distance of flight).

Development of a RICH Prototype with C6F14

设计图及样机实物

FEE card -2

150

Full size DTOF prototype and readout electronics

Quartz radiator cleaning and mounting

组装清洗装置

用吸盘将晶体放入清洗装置

人工搬运至洁净间

吊装搬运晶体

搬运转移出水箱

Readout electronics development

Cosmic-ray test

晶体侧边涂黑 洁净室拆卸清洗装置 **Detector assembling**

安装晶体

安装风扇和探测器外壳

安装前端版

 χ^2 / ndf

959.9 / 86

Electromagnetic Calorimeter

- A crystal calorimeter using pCsI (short decay time of 30ns) to tackle the high background rate (~ 1 MHz/crystal)
 - crystal size: 28cm (15X₀), 5×5cm²
 - defocused layout: 6732 crystals in barrel, 1938 crystals in endcaps
 - 4 large area APDs to address low light yield: 4×(1×1cm²)

Simulation assuming a light yield of 100pe/MeV

The Muon Detector

Parameter	Baseline design
R _{in} [cm]	185
R _{out} [cm]	291
R_e [cm]	85
L _{Barrel} [cm]	480
T _{Endcap} [cm]	107
Segmentation in ϕ	8
Number of detector layers	10
Iron yoke thickness [cm]	4/4/4.5/4.5/6/6/6/8/8 cm
$(\lambda = 16.77 \text{ cm})$	Total: 51 cm, 3.04λ
Solid angle	79.2%×4 π in barrel
	14.8%×4 π in endcap
	94%×4 π in total
Total area [m ²]	Barrel ~717
	Endcap ~520
	Total ~1237

- A hybrid design with Bakelite RPC and scintillator strips for optimal overall performance
 - RPC for inner layers : not sensitive to background
 - Scintillator for outer layers: sensitive to hadrons
- Key design parameters have been optimized based on simulation of muon identification performance
 - Inner 3 RPC layers + outer 7 scintillator layers
 - Taking neutral hadron identification into account

	-
	o: -
138	Ps)
10.00	DEMY ON TO

															2032-	2043-
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2042	2046
Form collaboration																
Conception design																
CDR																
R&D																
(TDR)																
Construction																
Operation																
Upgrade																

STCF kickoff meeting in 08/25/2023

Summary & Outlook

Contraction of the second

FRONTIERS OF PHYSICS

STCF conceptual design report (Volume 1): Physics & detector

M. Achasov³, X. C. Ai⁸², R. Aliberti³⁸, Q. An^{63,72}, X. Z. Bai^{63,72}, Y. Bai⁶², O. Bakina³⁹, A. Barnyakov^{3,50}, V. Blinov^{3,50,51}, V. Bobrovnikov^{3,51}, D. Bodrov^{23,60}, A. Bogomyagkov³, A. Bondar³, I. Boyko³⁹, Z. H. Bu⁷³, F. M. Cai²⁰, H. Cai⁷⁷, J. J. Cao²⁰, Q. H. Cao⁵⁴, X. Cao³³, Z. Cao^{63,72}, Q. Chang²⁰, K. T. Chao⁵⁴, D. Y. Chen⁶², H. Chen⁸¹, H. X. Chen⁶², J. F. Chen⁵⁸, K. Chen⁶, L. L. Chen²⁰, P. Chen⁷⁸, S. L. Chen⁶, S. M. Chen⁶⁶, S. Chen⁶⁹, S. P. Chen⁶⁹, W. Chen⁶⁴, X. Chen⁷⁴, X. F. Chen⁵⁸, X. R. Chen³³, Y. Chen³², Y. Q. Chen³⁶, H. Y. Cheng³⁴, J. Cheng⁴⁸, S. Cheng²⁸, T. G. Cheng², J. P. Dai⁸⁰, L. Y. Dai²⁸, X. C. Dai⁵⁴, D. Dedovich³⁹, A. Denig^{19,38}, I. Denisenko³⁹, J. M. Dias⁴, D. Z. Ding⁵⁸, L. Y. Dong³², W. H. Dong^{63,72}, V. Druzhinin³, D. S. Du^{63,72}, Y. J. Du⁷⁷, Z. G. Du⁴¹, L. M. Duan³³, D. Epifanov³, Y. L. Fan⁷⁷, S. S. Fang³², Z. J. Fang^{63,72}, G. Fedotovich³, C. O. Feng^{63,72}, X. Feng⁵⁴, Y. T. Feng^{63,72}, J. L. Fu⁶⁹, J. Gao⁵⁹, P. S. Ge⁷³, C. Q. Geng¹⁵, L. S. Geng², A. Gilman⁷¹, L. Gong⁴³, T. Gong²¹, B. Gou³³, W. Gradl³⁸, J. L. Gu^{63,72}, A. Guevara⁴, L. C. Gui²⁶, A. Q. Guo³³, F. K. Guo^{4,69,2}, J. C. Guo^{63,72}, J. Guo⁵⁹, Y. P. Guo¹¹, Z. H. Guo¹⁶, A. Guskov³⁹, K. L. Han⁶⁹, L. Han^{63,72}, M. Han^{63,72}, X. Q. Hao²⁰, J. B. He⁶⁹, S. Q. He^{63,72}, X. G. He⁵⁹, Y. L. He²⁰, Z. B. He³³, Z. X. Heng²⁰, B. L. Hou^{63,72}, T. J. Hou⁷⁴, Y. R. Hou⁶⁹, C. Y. Hu⁷⁴, H. M. Hu³², K. Hu⁵⁷, R. J. Hu³³, X. H. Hu⁹, Y. C. Hu⁴⁹, J. Hua⁶¹, G. S. Huang^{63,72}, J. S. Huang⁴⁷, M. Huang⁶⁹, Q. Y. Huang⁶⁹, W. Q. Huang⁶⁹, X. T. Huang⁵⁷, X. J. Huang³³, Y. B. Huang¹⁴, Y. S. Huang⁶⁴, N. Hüsken³⁸, V. Ivanov³, Q. P. Ji²⁰, J. J. Jia⁷⁷, S. Jia⁶², Z. K. Jia^{63,72}, H. B. Jiang⁷⁷, J. Jiang⁵⁷, S. Z. Jiang¹⁴, J. B. Jiao⁵⁷, Z. Jiao²⁴, H. J. Jing⁶⁹, X. L. Kang⁸, X. S. Kang⁴³, B. C. Ke⁸², M. Kenzie⁵, A. Khoukaz⁷⁶, I. Koop^{3,50,51}, E. Kravchenko^{3,51}, A. Kuzmin³, Y. Lei⁶⁰, E. Levichev³, C. H. Li⁴², C. Li⁵⁵, D. Y. Li³³, F. Li^{63,72}, G. Li⁵⁵, G. Li¹⁵, H. B. Li^{32,69}, H. Li^{63,72}, H. N. Li⁶¹, H. J. Li²⁰, H. L. Li²⁷, J. M. Li^{63,72}, J. Li³², L. Li⁵⁶, L. Li⁵⁹, L. Y. Li^{63,72}, N. Li⁶⁴, P. R. Li⁴¹, R. H. Li³⁰, S. Li⁵⁹, T. Li⁵⁷, W. J. Li²⁰, X. Li³³, X. H. Li⁷⁴, X. O. Li⁶, X. H. Li^{63,72}, Y. Li⁷⁹, Y. Y. Li⁷², Z. J. Li³³ H. Liang^{63,72}, J. H. Liang⁶¹, Y. T. Liang³³, G. R. Liao¹³, L. Z. Liao²⁵, Y. Liao⁶¹, C. X. Lin⁶⁹, D. X. Lin³³, X. S. Lin^{63,72}, B. J. Liu³², C. W. Liu¹⁵, D. Liu^{63,72}, F. Liu⁶, G. M. Liu⁶¹, H. B. Liu¹⁴, J. Liu⁵⁴, J. J. Liu⁷⁴, J. B. Liu^{63,72}, K. Liu⁴¹, K. Y. Liu⁴³, K. Liu⁵⁹, L. Liu^{63,72}, Q. Liu⁶⁹, S. B. Liu^{63,72}, T. Liu¹¹, X. Liu⁴¹, Y. W. Liu^{63,72}, Y. Liu⁸², Y. L. Liu^{63,72}, Z. Q. Liu⁵⁷, Z. Y. Liu⁴¹, Z. W. Liu⁴⁵, I. Logashenko³, Y. Long^{63,72}, C. G. Lu³³, J. X. Lu², N. Lu^{63,72}, Q. F. Lü²⁶, Y. Lu⁷, Y. Lu⁶⁹, Z. Lu⁶², P. Lukin³, F. J. Luo⁷⁴, T. Luo¹¹, X. F. Luo⁶, H. J. Lyu²⁴, X. R. Lyu⁶⁹, J. P. Ma³⁵, P. Ma³³, Y. Ma¹⁵, Y. M. Ma³³, F. Maas^{19,38}, S. Malde⁷¹, D. Matvienko³ Z. X. Menq⁷⁰, R. Mitchell²⁹, A. Nefediev⁴⁰, Y. Nefediov³⁹, S. L. Olsen^{22,53}, Q. Ouyanq^{32,63}, P. Pakhlov²³, G. Pakhlova^{23,52}, X. Pan⁶⁰, Y. Pan⁶², E. Passemar^{29,65,67}, Y. P. Pei^{63,72}, H. P. Peng^{63,72}, L. Peng²⁷, X. Y. Peng⁸, X. J. Peng⁴¹, K. Peters¹², S. Pivovarov³, E. Pyata³, B. B. Qi^{63,72}, Y. Q. Qi^{63,72}, W. B. Qian⁶⁹ Y. Qian³³, C. F. Qiao⁶⁹, J. J. Qin⁷⁴, J. J. Qin^{63,72}, L. Q. Qin¹³, X. S. Qin⁵⁷, T. L. Qiu³³, J. Rademacker⁶⁸, C. F. Redmer³⁸, H. Y. Sang^{63,72}, M. Saur⁵⁴, W. Shan²⁶, X. Y. Shan^{63,72}, L. L. Shang²⁰, M. Shao^{63,72}, L. Shekhtman³, C. P. Shen¹¹, J. M. Shen²⁸, Z. T. Shen^{63,72}, H. C. Shi^{63,72}, X. D. Shi^{63,72}, B. Shwartz³, A. Sokolov³, J. J. Song²⁰, W. M. Song³⁶, Y. Song^{63,72}, Y. X. Song¹⁰, A. Sukharev^{3,51}, J. F. Sun²⁰, L. Sun⁷⁷, X. M. Sun⁶, Y. J. Sun^{63,72}, Z. P. Sun³³, J. Tang⁶⁴, S. S. Tang^{63,72}, Z. B. Tang^{63,72}, C. H. Tian^{63,72}, J. S. Tian⁷⁸, Y. Tian³³, Y. Tikhonov³, K. Todyshev^{3,51}, T. Uglov⁵², V. Vorobyev³, B. D. Wan¹⁵, B. L. Wang⁶⁹, B. Wang^{63,72}, D. Y. Wang⁵⁴, G. Y. Wang²¹, G. L. Wang¹⁷, H. L. Wang⁶¹, J. Wang⁴⁹, J. H. Wang^{63,72}, J. C. Wang^{63,72}, M. L. Wang³², R. Wang^{63,72}, R. Wang³³, S. B. Wang⁵⁹, W. Wang⁵⁹, W. P. Wang^{63,72}, X. C. Wang²⁰, X. D. Wang⁷⁴, X. L. Wang^{63,72}, X. L. Wang²⁰, X. P. Wang², X. F. Wang⁴¹,

 STCF is a super tau-charm facility proposed by the Chinese HEP community as one of the post-BEPCII HEP projects in China.

► $E_{cm} = 2 - 7 \text{ GeV}, L > 0.5 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}@4 \text{ GeV}$

- Many new R&D efforts have launched, the CDR for physics and detector was published recently.
- A full-scale R&D program funded by local governments and USTC
- Still lots of room for design optimization, particularly global optimization

Thanks for your attention!

